Renew. Energy Environ. Sustain.
Volume 2, 2017
Sustainable energy systems for the future
Article Number 31
Number of page(s) 7
Published online 08 September 2017
  1. IEC 61400.2-2013, Wind Turbines Part 2. Design Requirements for Small Wind Turbines (Australia Standard: Australia, 2013) [Google Scholar]
  2. K. Sunderland, T. Woolmington, M. Conlon, J. Blackledge, Urban deployment of small wind turbines: power performance and turbulence, in Proc. 48th International Universities Power Engineering Conference, Dublin Institute of Technology, Ireland, 2–5 September 2013 (2013) [Google Scholar]
  3. A.B. Tabrizi, J. Whale, T. Lyons, T. Urmee, Extent to which international wind turbine design standard, IEC61400-2 is valid for a rooftop wind installation, J. Wind Eng. Ind. Aerodyn. 139, 50 (2015) [CrossRef] [Google Scholar]
  4. New Energy Focus, B. Windpower, UK field trial of building mounted wind turbines shows very poor results (2012), Available from: (last consulted on 2016/10/06) [Google Scholar]
  5. Nekon Pty. Ltd., Case Study: Wind Turbines Communications (2009), Available from: (last consulted on 2016/03/07) [Google Scholar]
  6. Warwick Wind Trails Final, Encraft (2009), Available from: [Google Scholar]
  7. A.-S. Yang, Y.-M. Su, C.-Y. Wen, Y.-H. Juan, W.-S. Wang, C.-H. Cheng, Estimation of wind power generation in dense urban area, Appl. Energy 171, 213 (2016) [CrossRef] [Google Scholar]
  8. J.L. Acosta, K. Combe, S.Z. Djokic, I. Hernando-Gil, Performance assessment of micro and small-scale wind turbines in urban areas, IEEE Syst. J. 6, 152 (2012) [CrossRef] [Google Scholar]
  9. L.C. Pagnini, M. Burlando, M.P. Repetto, Experimental power curve of small-size wind turbines in turbulent urban environment, Appl. Energy 154, 112 (2015) [CrossRef] [Google Scholar]
  10. A.B. Tabrizi, J. Whale, T. Lyons, T. Urmee, Designing small wind turbines for highly turbulent sites, in Solar2014: The 52nd Annual Conference of the Australian Solar Council, 8–9 May 2014, Melbourne, Australia (2014) [Google Scholar]
  11. J. Jeong, K. Park, S. Jun, K. Song, D. Lee, Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind, J. Mech. Sci. Technol. 26, 827 (2012) [CrossRef] [Google Scholar]
  12. B. Wang, L.D. Cot, L. Adolphe, S. Geoffroy, J. Morchain, Estimation of wind energy over roof of two perpendicular buildings, Energy Build. 88, 57 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  13. K.K. Padmanabhan, Study on increasing wind power in buildings using TRIZ tool in urban areas, Energy Build. 61, 344 (2012) [CrossRef] [Google Scholar]
  14. H.N. Chaudhry, J.K. Calautit, B.R. Hughes, The influence of structural morphology on the efficiency of Building Integrated Wind Turbines (BIWT), AIMS Energy 2, 219 (2014) [CrossRef] [Google Scholar]
  15. I. Abohela, N. Hamza, S. Dudek, Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines, Renew. Energy 50, 1106 (2013) [CrossRef] [Google Scholar]
  16. S.P. Evans, D. Bradney, P. Clausen, Aeroelastic measurements and simulations of a small wind turbine operating in the built environment, J. Phys.: Conf. Ser. 753, 042013 (2016) [CrossRef] [Google Scholar]
  17. M. Hölling, A. Morales, J. Schneemann, T. Mücke, M. Wächter, J. Peinke, The relevance of turbulence for wind energy related research, in Progress in Turbulence and Wind Energy IV: Proceedings of the iTi Conference in Turbulence 2010 (2012), pp. 247–250 [Google Scholar]
  18. C.H.J. Stork, C.P. Butterfield, W. Holley, P.H. Madsen, P.H. Jensen, Wind conditions for wind turbine design proposals for revision of the IEC 1400-1 standard, J. Wind Eng. Ind. Aerodyn. 74–76, 443 (1998) [CrossRef] [Google Scholar]
  19. J.M. Jonkman, M.L. Buhl Jr, FAST User’s Guide (National Renewable Energy Laboratory, Golden, CO, 2005) [Google Scholar]
  20. D. Corbus, M. Meadors, Small Wind Research Turbine: Final Report (National Renewable Energy Laboratory, Golden, CO, 2005) [CrossRef] [Google Scholar]
  21. S.P. Evans. Aeroelastic Measurements, Simulations, and Fatigue Predictions for Small Wind Turbines Operating in Highly Turbulent Flow. PhD Thesis (School of Engineering, The University of Newcastle, Australia, 2017) [Google Scholar]
  22. P. Giguere, M.S. Selig, Low Reynolds number airfoils for small horizontal axis wind turbines, Wind Eng. 21, 367 (1997) [Google Scholar]
  23. C.A. Lyon, A.P. Broeren, P. Giguere, A. Gopalarathnam, M.S. Selig, Summary of Low-Speed Airfoil Data: Volume 3 (SolarTech Publications, Virginia Beach, Virginia, 1997) [Google Scholar]
  24. P.J. Moriarty, A.C. Hansen, AeroDyn Theory Manual (National Renewable Energy Laboratory, Golden, CO, 2005) [CrossRef] [Google Scholar]
  25. D.H. Wood, Small wind turbines: analysis, design, and application (Springer, 2011) [Google Scholar]
  26. G.S. Bir, User’s Guide to PreComp (Pre-Processor for Computing Composite Blade Properties) (National Renewable Energy Laboratory, Golden, CO, 2006) [CrossRef] [Google Scholar]
  27. D.R. Bradney, Measured and Predicted Performance of a Small Wind Turbine Operating in Unsteady Flow. PhD Thesis (School of Engineering, The University of Newcastle, Australia, 2017) [Google Scholar]
  28. S. Lee, M.J. Churchfield, P.J. Moriarty, J. Jonkman, J. Michalakes, A numerical study of atmospheric and wake turbulence impacts on wind turbine fatigue loadings, J. Solar Energy Eng. Am. Soc. Mech. Eng. 135, 031001 (2013) [CrossRef] [Google Scholar]
  29. IEC 61400.13-2015, Wind Turbines Part 13. Measurement of Mechanical Loads (Australia Standard: Australia, 2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.