Renew. Energy Environ. Sustain.
Volume 2, 2017
Sustainable energy systems for the future
Article Number 32
Number of page(s) 7
Published online 08 September 2017
  1. T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, Y. Zeraouli, Energy storage: applications and challenges, Sol. Energy Mater. Sol. Cells 120, 59 (2014) [CrossRef] [Google Scholar]
  2. G. Alva, L. Liu, X. Huang, G. Fang, Thermal energy storage materials and systems for solar energy applications, Renew. Sustain. Energy Rev. 68, 693 (2017) [CrossRef] [Google Scholar]
  3. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1 – concepts, materials and modellization, Renew. Sustain. Energy Rev. 14, 31 (2010) [Google Scholar]
  4. S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci. 39, 285 (2013) [CrossRef] [Google Scholar]
  5. IRENA, Renewable energy technologies cost analysis series: concentrating solar power, Compr. Renew. Energy 3, 595 (2012) [Google Scholar]
  6. C. Smith, Y. Sun, B. Webby, A. Beath, F. Bruno, Cost analysis of high temperature thermal energy storage for solar power plant, in Solar 2014, Melbourne, Australia (2014) [Google Scholar]
  7. W. Zhang, Concentrating Solar Power − State of the Art, Cost Analysis and Pre-Feasibility Study for the Implementation in China (Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart, 2009) [Google Scholar]
  8. M. Liu, N.H. Steven Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renew. Sustain. Energy Rev. 53, 1411 (2016) [CrossRef] [Google Scholar]
  9. E. Kisi, H. Sugo, D. Cuskelly, T. Fiedler, A. Rawson, A. Post, J. Bradley, M. Copus, S. Reed, Miscibiliy gap alloys – a new thermal energy storage solution, in World Renewable Energy Congress 2017, Perth, Australia (2017) [Google Scholar]
  10. A. Rawson, E. Kisi, H. Sugo, T. Fiedler, Effective conductivity of Cu–Fe and Sn–Al miscibility gap alloys, Int. J. Heat Mass Transf. 77, 395 (2014) [CrossRef] [Google Scholar]
  11. H. Sugo, E. Kisi, D. Cuskelly, Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications, Appl. Therm. Eng. 51, 1345 (2013) [CrossRef] [Google Scholar]
  12. A. Rawson, H. Sugo, E. Kisi, Characterising thermal properties of miscibility gap alloys for thermal storage applications, in Solar2014: The 52nd Annual Conference of the Australian Solar Council, Melbourne, Australia (2014) [Google Scholar]
  13. Solúcar, Inabensa, Fichtner, Ciemat, DLR, Final Technical Progress Report: 10 MW Solar Thermal Power Plant for Southern Spain, 2005 [Google Scholar]
  14. M. Copus, S. Reed, E. Kisi, H. Sugo, J. Bradley, Scaling up miscibility gap alloy thermal storage materials, in WREC 2017, Perth, Australia (2017) [Google Scholar]
  15. M.F. Ashby, Materials Selection in Mechanical Design (Butterworth-Heinemann, 2011) [Google Scholar]
  16. HENGDA, Aluminium Metal Powder [WWW Document], 2015,, URL: [Google Scholar]
  17. KingStyle Metal, KingStyle Metal, China Factory Al 99% Aluminium Metal Powder [WWW Document], 2015,, URL: [Google Scholar]
  18. Vantaa, Aluminium Metal Powder [WWW Document], 2015,, URL: [Google Scholar]
  19. Bosun, Copper Cut Wire Shot, 99% [WWW Document], 2015,, URL: [Google Scholar]
  20. CDH857, Dendritic Electrolytic Copper Powder [WWW Document], 2014, [Google Scholar]
  21. CNPC, Copper Powder [WWW Document], 2015,, URL: [Google Scholar]
  22. A. Dashkov, Graphite: Time to Invest, or Flavor of the Day? [WWW Document], Credit Writedowns, 2012, URL: [Google Scholar]
  23. GRAPHITE 101, Graphite One Resources [WWW Document], 2014, URL: (accessed on: 2015/01/01) [Google Scholar]
  24. Saint Jean Carbon, Graphite Prices [WWW Document], 2014, URL: (accessed on: 2015/01/01) [Google Scholar]
  25. Talga Resources, About Graphite [WWW Document], 2014, URL: (accessed on: 2015/01/01) [Google Scholar]
  26. CNPC, Iron Powder Price Ton [WWW Document], 2014,, URL: [Google Scholar]
  27. CNPC, Electrolytic Iron Metal Powder [WWW Document], 2014,, URL: [Google Scholar]
  28. Xingyue, High Purity Competitive Reduced Iron Powder [WWW Document], 2015,, URL: [Google Scholar]
  29. CNPC, Magnesium Powder Price [WWW Document], 2014,, URL: [Google Scholar]
  30. JB, 99.8% Pure Magnesium Powder [WWW Document], 2014,, URL: [Google Scholar]
  31. Tian Ma, Magnesium Powder Price [WWW Document], 2014,, URL: [Google Scholar]
  32. KANGMENG, High Quality and Best Price Silicon Metal Powder Series (98%, 98.6%, 99.5%, 99.9%) [WWW Document], 2014,, URL: [Google Scholar]
  33. Star, Silicon Metal Raw Material Powder [WWW Document], 2014,, URL: [Google Scholar]
  34. TF, Price Powder Silicon Metal [WWW Document], 2014, [Google Scholar]
  35. Refwin, Land Silicon Carbide [WWW Document], 2015, URL: (accessed on: 2015/01/01) [Google Scholar]
  36. Silicon Carbide & More, Silicon Carbide & More [WWW Document], Kormac Kennedy, 2011, URL: (accessed on: 2015/01/01) [Google Scholar]
  37. Stone Contact, S. Contact, Black Silicon Carbide for Abrasives [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  38. AL, Top Grade BC Tin Metal Powder 300 Mesh 99.6% [WWW Document], 2014,, URL: [Google Scholar]
  39. BAOFULL, Tin Metal Powder 300 mesh 99.5% [WWW Document], 2014,, URL: [Google Scholar]
  40. CDH857, China Tin Metal Powder [WWW Document], 2014,, URL: [Google Scholar]
  41. Longchen, ZINC CUT WIRE (SHOT) 1.9mm [WWW Document], 2014,, URL: [Google Scholar]
  42. Vantaa, Zinc Metal Powder [WWW Document], 2014,, URL: [Google Scholar]
  43. Zefeng, Factory Zinc Powder [WWW Document], 2014,, URL: [Google Scholar]
  44. Scott Metals, Scott Metals: Black Steel Pipe [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  45. All Things Stainless, Stainless Steel Sheet [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  46., 205 Litre Stainless Steel Drums [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  47. Australia Trade, A.T. Shipping, Container Sizes [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  48. Containerco, Containerco Shipping Container Sales & Hire [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  49., Dempsey's Forge, Thermal Ceramics Kaowool [WWW Document], n.d., URL: (accessed on: 2015/01/01) [Google Scholar]
  50. D. Kearney, B. Kelly, R. Cable, N. Potrovitza, P. Nava, U. Herrmann, J. Mahoney, R. Pacheco, H. Price, D. Blake, Assessment of a molten salt heat transfer fluid in a parabolic trough solar field, JSEE 125, 1 (2002) [Google Scholar]
  51. J.K. Fink, L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, 1995, doi:10.2172/94649 [CrossRef] [Google Scholar]
  52. R. Jacob, N. Trout, R. Raud, S. Clarke, T.A. Steinberg, W. Saman, F. Bruno, Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage, in SolarPACES 2015 (AIP Publishing, 2016), p. 50021, doi:10.1063/1.4949119 [Google Scholar]
  53. G.J. Janz, Molten Salts Handbook (Academic Press, 1967) [Google Scholar]
  54. F. Bai, Y. Wang, Z. Wang, Y. Sun, A. Beath, Economic evaluation of shell-and-tube latent heat thermal energy storage for concentrating solar power applications, in SolarPACES 2014 (Elsevier, 2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.