Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 8, 2023
Article Number 16
Number of page(s) 14
DOI https://doi.org/10.1051/rees/2023013
Published online 29 August 2023
  1. Energysage, Wind energy pros and cons, 2019. Available online: https://www.energysage.com/about-clean-energy/wind/pros-cons-wind-energy/ [Google Scholar]
  2. W. König, Ein galvanisches Element aus der Partherzeit? Forschungen Fortschritte 14, 8–9 (1938) [Google Scholar]
  3. E. Danila, History of the first energy storage systems, 2010. Available online: https://www.researchgate.net/publication/271371039 [Google Scholar]
  4. E. Danila, Autonomy improvement of data centre backup sources with supercapacitors, 2013. Available online: https://www.researchgate.net/publication/271367567_Autonomy_improvement_of_data_center_backup_sources_with_supercapacitors [Google Scholar]
  5. M.B. Abdelghany, M.F. Shehzad, D. Liuzza V. Mariani, L. Glielmo, Optimal operations for hydrogen-based energy storage systems in wind farms via model predictive control, Int. J. Hydrogen Energy (2021). Available online: https://doi.org/10.1016/j.ijhydene.2021.01.064. [Google Scholar]
  6. D. Pullen, Mechanical and Electrical Flywheel Hybrid Technology to Store Energy in Vehicles, Woodhead Publishing, Cambridge, 2014 [Google Scholar]
  7. A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, The scale‐up and commercialization of nonaqueous Na‐Ion battery technologies, Adv. Energy Mater. 8, 1702869 (2018) [CrossRef] [Google Scholar]
  8. A. Boretti, Production of hydrogen for export from wind and solar energy, natural gas, and coal in Australia, Int. J. Hydrogen Energy 45, 3899–3904 (2020) [CrossRef] [Google Scholar]
  9. A. Colthorpe, Energy storage 2019. Available online: https://www.energy-storage.news/news/nec-picks-ambris-liquid-metal-battery-for-longer-duration-ess-projects (accessed 20 July 2022) [Google Scholar]
  10. M. Ditaranto, T. Heggset, D. Berstad, Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: assessment of process performance, Energy 116646 (2020) [CrossRef] [Google Scholar]
  11. Europeanfiles, Unlocking The Full Potential of Hydrogen in Europe, The European Files, Brussels, 2021. https://www.europeanfiles.eu/magazine/unlocking-the-full-potential-of-hydrogen-in-europe [Google Scholar]
  12. M.E.A. Farrag, D.M. Hepburn, B. Garcia, Quantification of efficiency improvements from integration of battery energy storage systems and renewable energy sources into domestic distribution networks, Energies (Basel) 12, 4640 (2019) [CrossRef] [Google Scholar]
  13. S. Giarola, A. Molar-Cruz, K. Vaillancourt, O. Bahn, L. Sarmiento, A. Hawkes, M. Brown, The role of energy storage in the uptake of renewable energy: a model comparison approach, Energy Policy 112159 (2021) [Google Scholar]
  14. Q. Gong, W. Ding, A. Bonk, H. Li, K. Wang, A. Jianu, A. Weisenburger, A. Bund, T. Bauer, Molten iodide salt electrolyte for the low-temperature low-cost sodium-based liquid metal battery, J. Power Sources 228674 (2020) [CrossRef] [Google Scholar]
  15. D. Groppi, D. Astiaso Garcia, G. Lo Basso, F. Cumo, L. De Santoli, Analysing economic and environmental sustainability related to the use of battery and hydrogen energy storages for increasing the energy independence of small islands, Energy Conversion Manage. 177, 64–76 (2018) [CrossRef] [Google Scholar]
  16. N. Günter, A. Marinopoulos, Energy storage for grid services and applications: classification, market review, metrics, and methodology for evaluation of deployment cases, J. Energy Storage 226–234 (2016) [CrossRef] [Google Scholar]
  17. S. Kharel, B. Shabani, Hydrogen as a long-term large-scale energy storage solution to support renewables, Energies (Basel) 11, 2825 (2018) [CrossRef] [Google Scholar]
  18. S.L. Koh, Y.S. Lim, Methodology for assessing viability of energy storage system for buildings. Energy (Oxford) 519–531 (2016) [Google Scholar]
  19. A. Kulatunga, V. Ralapanawe, R. Sepala, S. Gajanayake, S. Talagalla, Sri Lanka, achieving of 80 percent renewable by 2030 (2020) [Google Scholar]
  20. K.H. Lacommare, H. Joshep, Understanding the cost of power interruptions to U.S electricity consumers, 2004. https://www.researchgate.net/publication/252701502_Understanding_the_Cost_of_Power_Interruptions_to_US_Electricity_Consumers [CrossRef] [Google Scholar]
  21. X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy 137, 511–536 (2015) [CrossRef] [Google Scholar]
  22. A. Maimo-Far, A. Tantet, V. Homar, P. Drobinski, Predictable and unpredictable climate variability impacts on optimal renewable energy mixes: the example of Spain, Energies (Basel) 13, 1 (2020). [Google Scholar]
  23. A. Mayyas, M. Wei, G. Levis, Hydrogen as a long-term, large-scale energy storage solution when coupled with renewable energy sources or grids with dynamic electricity pricing schemes, Int. J. Hydrogen Energy 16311–16325 (2020) [CrossRef] [Google Scholar]
  24. K. Nagasawa, F.T. Davidson, A.C. Lloyd, M.E. Webber, Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles, Appl. Energy 1001–1016 (2019) [CrossRef] [Google Scholar]
  25. M.A. Pellow, C.J.M. Emmott, C.B. Barnhart, S.M. Benson, Hydrogen or batteries for grid storage? A net energy analysis 2015. Available online: https://pubs.rsc.org/en/content/articlehtml/2015/ee/c4ee04041d [Google Scholar]
  26. M. Singh et al., 100% Electricity generation through renewable energy by 2050: assessment of Sri Lanka's power sector, 2017. https://www.adb.org/publications/electricity-generation-renewable-energy-2050-sri lanka [Google Scholar]
  27. J.M. Thomas, P.P. Edwards, P.J. Dobson, G.P. Owen, Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells, J. Energy Chem. (2020). Available online: https://www.sciencedirect.com/science/article/pii/S2095495620302448 [Google Scholar]
  28. M.S. Whittingham, History, evolution, and future status of energy storage, Proc. IEEE 100, 1518–1534 (2012) [CrossRef] [Google Scholar]
  29. Woodbank Communications Ltd., Liquid Metal Batteries, 2020. https://www.mpoweruk.com/liquid_batteries.htm [Google Scholar]
  30. World Bank and IFC, Expanding Offshore Wind to Emerging Markets, 2019. https://www.worldbank.org/en/topic/energy/publication/expanding-offshore-wind-in-emerging-markets [Google Scholar]
  31. Y. Wu, T. Zhang, R. Gao, C. Wu, Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid, Appl. Energy 116562 (2021) [CrossRef] [Google Scholar]
  32. AES Businesswire, AES wind generation and AES energy storage announce commercial operation of Laurel Mountain wind facility combining energy storage and wind generation 2011. https://www.businesswire.com/news/home/20111027006259/en/AES-Wind-Generation-and-AES-Energy-Storage-Announce-Commercial-Operation-of-Laurel-Mountain-Wind-Facility-Combining-Energy-Storage-and-Wind-Generation [Google Scholar]
  33. R. Karunanayake, Gazette of the Government of Democratic Socialist Republic of Sri Lanka-National Energy Policy of Sri Lanka, 2019 [Google Scholar]
  34. A.S. Belenky, Storing Electricity in a Country's Electrical Grid as a Key Energy Problem of the 21st Century 2016. https://www.sciencedirect.com/science/article/pii/S187705091631290X [Google Scholar]
  35. Wind Europe, Wind energy and on-site energy storage. https://windeurope.org/wp-content/uploads/files/policy/position-papers/WindEurope-Wind-energy-and-on-site-energy-storage.pdf [Google Scholar]
  36. G.L. Soloveichik, Regenerative fuel cells for energy storage, Proc. IEEE 102, 964–975 (2014) [CrossRef] [Google Scholar]
  37. T. Simla, W. Stanek, Reducing the impact of wind farms on the electric power system by the use of energy storage, Renewable Energy 145, 772–782 (2020) [CrossRef] [Google Scholar]
  38. J.G. Simpson, G. Hanrahan, E. Loth, G.M. Koenig, D.R. Sadoway, Liquid metal battery storage in an offshore wind turbine: concept and economic analysis, Renewable Sustainable Energy Rev. 149, 111387 (2021) [CrossRef] [Google Scholar]
  39. A.L. Simon, Chapter 10 - To catch the wind, in: A.L. Simon (Ed.), Energy Resources , Pergamon, 1975, pp. 105109 [Google Scholar]
  40. U.S. Energy Information Administration, Wind Eplained. Wind Energy and Environment, 2022. https://www.eia.gov/energyexplained/wind/wind-energy-and-the-environment.php [Google Scholar]
  41. United Nations Climate Action, What is Renewable Energy? https://www.un.org/en/climatechange/what-is-renewable-energy [Google Scholar]
  42. M.B. Abdelghany, M.F. Shehzad, V. Mariani, D. Liuzza, L. Glielmo, Two-stage model predictive control for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for fuel cell electric vehicles, Int. J. Hydrogen Energy 47, 32202–32222 (2022) [CrossRef] [Google Scholar]
  43. T. Sutharssan, D. Montalvao, Y.K. Chen, W. Wang, C. Pisac, H. Elemara, A review on prognostics and health monitoring of proton exchange membrane fuel cell, Renewable Sustainable Energy Rev 75, 440–450 (2017) [CrossRef] [Google Scholar]
  44. R.B. Gupta, A. Basile, T.N. Veziroğlu, Compendium of hydrogen energy (Woodhead Publishing, Cambridge, England, 2015) [Google Scholar]
  45. J.D. Eichman, F. Mueller, B. Tarroja, L.S. Schell, S. Samuelsen, Exploration of the integration of renewable resources into California's electric system using the Holistic Grid Resource Integration and Deployment (HiGRID) tool, Energy (Oxford) 50, 353–363 (2013) [CrossRef] [Google Scholar]
  46. F. Orecchini, A. Santiangeli, Beyond smart grids – the need of intelligent energy networks for a higher global efficiency through energy vectors integration, Int. J. Hydrogen Energy 36, 8126–8133 (2011) [CrossRef] [Google Scholar]
  47. S.F. Bush, Smart grid: communication-enabled intelligence for the electric power grid. 1st ed. (John Wiley & Sons, Chichester, United Kingdom, 2014) [CrossRef] [Google Scholar]
  48. J. Ekanayake, Smart grid: technology and applications. 2nd Aufl. (Wiley, Chichester, West Sussex, UK; Hoboken, NJ, 2012) [CrossRef] [Google Scholar]
  49. J. Huang, P. Balcombe, Z. Feng, Technical and economic analysis of different colours of producing hydrogen in China, Fuel 337, 127227 (2023) [CrossRef] [Google Scholar]
  50. E. Shafiei, B. Davidsdottir, J. Leaver, H. Stefansson, E.I. Asgeirsson, Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity, J. Cleaner Prod. 141, 237–247 (2017) [CrossRef] [Google Scholar]
  51. B. Miao, S.H. Chan, The economic feasibility study of a 100-MW power-to-gas plant, Int. J. Hydrogen Energy 44, 20978–20986 (2019) [CrossRef] [Google Scholar]
  52. R. Hassan, An overview for wind energy technology for electricity generation, July 23, 2018. Available at SSRN: https://ssrn.com/abstract=3182994 or http://dx.doi.org/10.2139/ssrn.3182994 [Google Scholar]
  53. Nationa Hydrogen Council, Hydrogen Action Plan, Germany, July 2021. Available online: chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/https://www.wasserstoffrat.de/fileadmin/wasserstoffrat/media/Dokumente/EN/2021-07-02_NWR-Hydrogen_Action_Plan.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.