Issue |
Renew. Energy Environ. Sustain.
Volume 8, 2023
Achieving Zero Carbon Emission by 2030
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/rees/2022016 | |
Published online | 10 January 2023 |
- IEA, How rapidly will the global electricity storage market grow by 2026? IEA, Paris (2021) https://www.iea.org/articles/how-rapidly-will-the-global-electricity-storage-market-grow-by-2026 [Google Scholar]
- Irena, Global Renewables Outlook: Energy transformation 2050 (2020) [Google Scholar]
- IEA, Electricity Market Report (2020) [Google Scholar]
- C.K. Das, O. Bass, G. Kothapalli, T.S. Mahmoud, D. Habibi, Overview of energy storage systems in distribution networks: placement, sizing, operation, and power quality, Renew. Sustain. Energy Rev. 91, 1205–1230 (2018) [CrossRef] [Google Scholar]
- S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments, J. Energy Storage 27, 101047 (2020) [CrossRef] [Google Scholar]
- A.Z. AL Shaqsi, K. Sopian, A. Al-Hinai, Review of energy storage services, applications, limitations, and benefits, Energy Rep. 6, 288–306 (2020) [CrossRef] [Google Scholar]
- A.G. Olabi, C. Onumaegbu, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Al-Alami, Critical review of energy storage systems, Energy 214, 118987 (2021) [CrossRef] [Google Scholar]
- R. Haas et al., On the economics of storage for electricity: Current state and future market design prospects, Wiley Interdiscipl. Rev.: Energy Environ. 1–27 (2021) [Google Scholar]
- J. Topler, Hydrogen as energy-storage-medium and fuel, Renew. Energy Environ. Sustain. 1, 31 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
- I. Hydropower, The world's water battery: Pumped hydropower storage and the clean energy transition (2018), pp. 1–15 [Google Scholar]
- E. Barbour, I.A.G. Wilson, J. Radcliffe, Y. Ding, Y. Li, A review of pumped hydro energy storage development in signi fi cant international electricity markets, Renew. Sustain. Energy Rev. 61, 421–432 (2016) [CrossRef] [Google Scholar]
- L.M. Al-hadhrami. M. Alam, Pumped hydro energy storage system: a technological review, Renew. Sustain. Energy Rev. 44, 586–598 (2015) [CrossRef] [Google Scholar]
- J.D. Hunt et al., Existing and new arrangements of pumped-hydro storage plants, Renew. Sustain. Energy Rev. 129 (2020) [Google Scholar]
- A. Blakers, B. Lu, M. Stocks, K. Anderson, A. Nadolny, Pumped hydro energy storage to support 100% renewable electricity (2018), pp. 3672–3675 [Google Scholar]
- E. Barbaros, I. Aydin, K. Celebioglu, Feasibility of pumped storage hydropower with existing pricing policy in Turkey, Renew. Sustain. Energy Rev. 136, 110449 (2021) [CrossRef] [Google Scholar]
- M. King, A. Jain, R. Bhakar, J. Mathur, J. Wang, Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK, Renew. Sustain. Energy Rev. 139, 110705 (2021) [CrossRef] [Google Scholar]
- M. Habibi, V. Vahidinasab, A. Pirayesh, M. Shafie-khah, J.P.S. Catalao, An enhanced contingency-based model for joint energy and reserve markets operation by considering wind and energy storage systems, IEEE Trans. Ind. Informatics 17, 1–1 (2020) [Google Scholar]
- B. Li, J.F. Decarolis, A techno-economic assessment of offshore wind coupled to offshore compressed air energy storage, Appl. Energy 155, 315–322 (2015) [CrossRef] [Google Scholar]
- M.M. Rahman, E. Gemechu, A.O. Oni, A. Kumar, The development of a techno-economic model for the assessment of the cost of flywheel energy storage systems for utility-scale stationary applications, Sustain. Energy Technol. Assessments 47, 101382 (2021) [CrossRef] [Google Scholar]
- A. Arabkoohsar, M. Sadi, Flywheel Energy Storage (Elsevier Inc., 2021) [Google Scholar]
- B. Thormann, P. Puchbauer, T. Kienberger, Analyzing the suitability of flywheel energy storage systems for supplying high-power charging e-mobility use cases, J. Energy Storage 39, 102615 (2021) [CrossRef] [Google Scholar]
- Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current li-ion battery technologies in electric vehicles and opportunities for advancements, Energies 12, 1–20 (2019) [Google Scholar]
- Z. Fang, J. Wang, H. Wu, Q. Li, S. Fan, J. Wang, Progress and challenges of flexible lithium ion batteries, J. Power Sources 454, 227932 (2020) [CrossRef] [Google Scholar]
- G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives, Renew. Sustain. Energy Rev. 89, 292–308 (2018) [CrossRef] [Google Scholar]
- H.A. Behabtu et al., A review of energy storage technologies' application potentials in renewable energy sources grid integration, Sustainable 12, 1–20 (2020) [Google Scholar]
- Y. Yang, S. Bremner, C. Menictas, M. Kay, Battery energy storage system size determination in renewable energy systems: a review, Renew. Sustain. Energy Rev. 91, 109–125 (2018) [CrossRef] [Google Scholar]
- M. Alimardani, M. Narimani, S. Member, A new energy storage system configuration to extend Li-ion battery lifetime for a household une nouvelle configuration de système de stockage d' énergie pour prolonger la durée de vie de la batterie Li-Ion pour un foyer 44, 171–178 (2021) [Google Scholar]
- J. Münderlein, G. Ipers, M. Steinhoff, S. Zurmühlen, D.U. Sauer, Optimization of a hybrid storage system and evaluation of operation strategies, Int. J. Electr. Power Energy Syst. 119, 105887 (2020) [CrossRef] [Google Scholar]
- R.L. Fares, M.E. Webber, What are the tradeoffs between battery energy storage cycle life and calendar life in the energy arbitrage application? J. Energy Storage 16, 37–45 (2018) [CrossRef] [Google Scholar]
- M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed, Hybrid pumped hydro and battery storage for renewable energy based power supply system, Appl. Energy 257, 114026 (2020) [CrossRef] [Google Scholar]
- P. Malysz, An optimal energy storage control strategy for grid-connected microgrids, IEEE Trans. Smart Grid 5, 1785–1796 (2014) [CrossRef] [Google Scholar]
- J. Shi, W. Huang, N. Tai, P. Qiu, Y. Lu, Energy management strategy for microgrids including heat pump air- conditioning and hybrid energy storage systems, J. Eng. 2017, 2412–2416 (2017) [CrossRef] [Google Scholar]
- K. Pandžić, H. Pandžić, I. Kuzle, Electrical power and energy systems virtual storage plant offering strategy in the day-ahead electricity market, 104, 401–413 (2019) [Google Scholar]
- D. Metz, J.T. Saraiva, Use of battery storage systems for price arbitrage operations in the 15 - and 60-min German intraday markets, Electr. Power Syst. Res. 160, 27–36 (2018) [CrossRef] [Google Scholar]
- J.J. Kelly, P.G. Leahy, Optimal investment timing and sizing for battery energy storage systems, J. Energy Storage 28, 101272 (2020) [CrossRef] [Google Scholar]
- A. Poullikkas, A comparative overview of large-scale battery systems for electricity storage, Renew. Sustain. Energy Rev. 27, 778–788 (2013) [CrossRef] [Google Scholar]
- Y. Balali, S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, costs, Renew. Sustain. Energy Rev. 135, 110185 (2021) [CrossRef] [Google Scholar]
- J. Figgener et al., The development of stationary battery storage systems in Germany − a market review, J. Energy Storage 29, 101153 (2020) [CrossRef] [Google Scholar]
- E. Storage, E. Energy, H. Abdi, Learn more about Energy Storage System Energy Storage Systems Introduction to electrical energy systems (2019) [Google Scholar]
- F. Klumpp, Comparison of pumped hydro, hydrogen storage and compressed air energy storage for integrating high shares of renewable energies — Potential, cost-comparison and ranking, J. Energy Storage 8, 119–128 (2016) [CrossRef] [Google Scholar]
- L. Chang, Y. Hang Hu, Supercapacitors 2–5 (2018) [Google Scholar]
- Y. Wang, X. Wu, Y. Han, T. Li, Flexible supercapacitor: overview and outlooks, J. Energy Storage 42, 103053 (2021) [CrossRef] [Google Scholar]
- IRENA, Renewable Power Generation Costs in 2020 (2020) [Google Scholar]
- K.P. Kairies, J. Figgener, D. Haberschusz, O. Wessels, B. Tepe, D.U. Sauer, Market and technology development of PV home storage systems in Germany, J. Energy Storage 23, 416–424 (2019) [CrossRef] [Google Scholar]
- B. Dursun, B. Alboyaci, The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand, Renew. Sustain. Energy Rev. 14, 1979–1988 (2010) [CrossRef] [Google Scholar]
- G.N. Psarros, S.A. Papathanassiou, Electricity storage requirements to support the transition towards high renewable penetration levels − application to the Greek power system, J. Energy Storage 55, 105748 (2022) [CrossRef] [Google Scholar]
- Y. Xu et al., Research on the application of superconducting magnetic energy storage in microgrids for smoothing power fluctuation caused by operation mode switching, IEEE Trans. Appl. Supercond. 28, 10–14 (2018) [Google Scholar]
- G.J. Rı, Optimal sizing of renewable hybrids energy systems: a review of methodologies, Solar Energy 86, 1077–1088 (2012) [CrossRef] [Google Scholar]
- Y. He, S. Guo, J. Zhou, F. Wu, J. Huang, H. Pei, The quantitative techno-economic comparisons and multi-objective capacity optimization of wind-photovoltaic hybrid power system considering different energy storage technologies, Energy Convers. Manag. 229 (2021) [Google Scholar]
- Z. Shen, W. Wei, D. Wu, T. Ding, S. Mei, Modeling arbitrage of an energy storage unit without binary variables, CSEE J. Power Energy Syst. 7, 156–161 (2021) [Google Scholar]
- S.F. Santos, M. Gough, D.Z. Fitiwi, A.F.P. Silva, M. Shafie-Khah, J.P.S. Catalao, Influence of battery energy storage systems on transmission grid operation with a significant share of variable renewable energy sources, IEEE Syst. J. 1–12 (2021) [Google Scholar]
- B. Mohandes, M. Wahbah, M.S. Elmoursi, T.H. El-Fouly, Renewable energy management system: optimum design & hourly dispatch, IEEE Trans. Sustain. Energy 1–1 (2021) [Google Scholar]
- S. Mazzoni, S. Ooi, B. Nastasi, A. Romagnoli, Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems, Appl. Energy 254, 113682 (2019) [CrossRef] [Google Scholar]
- M.C. Soini, D. Parra, M.K. Patel, Does bulk electricity storage assist wind and solar in replacing dispatchable power production? Energy Econ. 85, 104495 (2020) [CrossRef] [Google Scholar]
- M. Nazemi, S. Member, P. Dehghanian, S. Member, Uncertainty-aware deployment of mobile energy storage systems for distribution grid resilience, IEEE Trans. Smart Grid. 3053, 1–15 (2021) [Google Scholar]
- Q. Hou, N. Zhang, E. Du, M. Miao, F. Peng, C. Kang, Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China, Appl. Energy 242, 205–215 (2019) [CrossRef] [Google Scholar]
- G.F. Frate, L. Ferrari, U. Desideri, Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications, E3S Web Conf. 137, 1–6 (2019) [Google Scholar]
- H.W. Sinn, Buffering volatility: a study on the limits of Germany's energy revolution, Eur. Econ. Rev. 99, 130–150 (2017) [CrossRef] [Google Scholar]
- M. Resch, J. Buhler, B. Schachler, A. Sumper, Techno-economic assessment of flexibility options versus grid expansion in distribution grids, IEEE Trans. Power Syst. 1–10 (2021) [Google Scholar]
- B. Dallinger, D. Schwabeneder, G. Lettner, H. Auer, Socio-economic benefit and profitability analyses of Austrian hydro storage power plants supporting increasing renewable electricity generation in Central Europe, Renew. Sustain. Energy Rev. 107, 482–496 (2019) [CrossRef] [Google Scholar]
- E. Telaretti, L. Dusonchet, Stationary battery technologies in the U.S.: development trends and prospects, Renew. Sustain. Energy Rev. 75, 380–392 (2017) [CrossRef] [Google Scholar]
- C. Junge, D. Mallapragada, R. Schmalensee, Energy storage investment and operation in efficient electric power systems, Energy J. 43, 1–24 (2022) [CrossRef] [Google Scholar]
- H.S. de Boer, L. Grond, H. Moll, R. Benders, The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels, Energy 72, 360–370 (2014) [CrossRef] [Google Scholar]
- A. Ajanovic, A. Hiesl, R. Haas, On the role of storage for electricity in smart energy systems, Energy 200, 117473 (2020) [CrossRef] [Google Scholar]
- A. Zerrahn, W. Schill, C. Kemfert, On the economics of electrical storage for variable renewable energy sources, Eur. Econ. Rev. 108, 259–279 (2018) [CrossRef] [Google Scholar]
- N. Aguiar, V. Gupta, An insurance contract design to boost storage participation in the electricity market, IEEE Trans. Sustain. Energy 12, 543–552 (2021) [CrossRef] [Google Scholar]
- D. Parra, X. Zhang, C. Bauer, M.K. Patel, An integrated techno-economic and life cycle environmental assessment of power-to-gas systems, Appl. Energy 193, 440–454 (2017) [CrossRef] [Google Scholar]
- Z. Topalovic, R. Haas, A. Ajanovi, A. Hiesl, Economics of electric energy storage. The case of Western Balkans, Energy 238, 121669 (2022) [CrossRef] [Google Scholar]
- M.M. Rahman, A.O. Oni, E. Gemechu, A. Kumar, Assessment of energy storage technologies: a review, Energy Convers. Manag. 223 (2020) [Google Scholar]
- M.H. Mostafa, S.H.E. Abdel, S.G. Ali, Z.M. Ali, A.Y. Abdelaziz, Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics, J. Energy Storage 29, 101345 (2020) [CrossRef] [Google Scholar]
- A. Ajanovic, R. Haas, On the long-term prospects of power-to-gas technologies, Wiley Interdiscip. Rev. Energy Environ. 8, 1–16 (2019) [Google Scholar]
- W.L. Schram, T. Alskaif, I. Lampropoulos, S. Henein, W.G.J.H.M. Van Sark, On the trade-off between environmental and economic objectives in community energy storage operational optimization, IEEE Trans. Sustain. Energy 11, 2653–2661 (2020) [CrossRef] [Google Scholar]
- European Commission, The future role and challenges of Energy Storage, DG ENER Work. Pap. (2013), pp. 1–36 [Google Scholar]
- European Commission, The European Green Deal, Eur. Comm. 53, 24 (2019) [Google Scholar]
- C.S. Lai, G. Locatelli, Are energy policies for supporting low-carbon power generation killing energy storage? J. Clean. Prod. 280, 124626 (2021) [CrossRef] [Google Scholar]
- M. Haji Bashi, L. De Tommasi, P. Lyons, Electricity market integration of utility-scale battery energy storage units in Ireland, the status and future regulatory frameworks, J. Energy Storage 55, 105442 (2022) [CrossRef] [Google Scholar]
- N. Martin, J. Rice, Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia, Renew. Sustain. Energy Rev. 137, 110617 (2021) [CrossRef] [Google Scholar]
- J. Geske, R. Green, Optimal storage investment and management under uncertainty, in 2016 IEEE 8th Int. Power Electron. Motion Control Conf, IPEMC-ECCE Asia 2016, 41, 524–529 (2016) [CrossRef] [Google Scholar]
- R. Green, I. Staffell, ‘Prosumage’ and the British electricity market, Econ. Energy Environ. Policy 6, 33–49 (2017) [CrossRef] [Google Scholar]
- S.A. El-batawy, W.G. Morsi, S. Member, Integration of prosumers with battery storage and electric vehicles via transactive energy, IEEE Trans. Power Del. 5, 383–394 (2021) [Google Scholar]
- Y. Shen, X. Liang, W. Hu, X. Dou, F. Yang, Optimal dispatch of regional integrated energy system based on a generalized energy storage model, IEEE Access 9, 1546–1555 (2021) [CrossRef] [Google Scholar]
- R. Dai, S. Member, H. Charkhgard, The utilization of shared energy storage in energy systems: a comprehensive review, IEEE Trans. Smart Grid 3053, 1–8 (2021) [Google Scholar]
- R. Irany, K. Aancha, G. Daniel, G. Arwa, Energy Storage Monitor, World Energy Counc. (2019), pp. 1–32 [Google Scholar]
- T.-T. Nguyen et al., A review on technology maturity of small scale energy storage technologies, Renew. Energy Environ. Sustain. 2, 36 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
- K. Say, W.P. Schill, M. John, Degrees of displacement: the impact of household PV battery prosumage on utility generation and storage, Appl. Energy 276, 115466 (2020) [CrossRef] [Google Scholar]
- J. Liu, X. Chen, Y. Xiang, D. Huo, J. Liu, Optimal planning and investment benefit analysis of shared energy storage for electricity retailers, Int. J. Electr. Power Energy Syst. 126, 106561 (2021) [CrossRef] [Google Scholar]
- Y. Ding, Q. Xu, Y. Xia, J. Zhao, X. Yuan, J. Yin, Optimal dispatching strategy for user-side integrated energy system considering multiservice of energy storage, Int. J. Electr. Power Energy Syst. 129, 106810 (2021) [CrossRef] [Google Scholar]
- N. Al Khafaf et al., Impact of battery storage on residential energy consumption: an Australian case study based on smart meter data, Renew. Energy 182, 390–400 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.