Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 8, 2023
Article Number 1
Number of page(s) 16
DOI https://doi.org/10.1051/rees/2022015
Published online 10 January 2023
  1. IRENA, World Energy Transitions Outlook: 1.5 °C Pathway. International Renewable Energy Agency, Abu Dhabi (2022). Available: www.irena.org/publications [Google Scholar]
  2. International Energy Agency, Energy Access Outlook 2017: World Energy Outlook Special Report (2017), doi: 10.1016/0022-2828(72)90097-1 [Google Scholar]
  3. D. Hales, REN21. Renewables 2018-global status report, Paris, REN21 Secretariate; 2018 (2018) [Google Scholar]
  4. African Energy Commission, Will Biomass Always Fuel Africa ? A special report from AFREC: Policy Brief 4, Algiers (2022). Available: https://au-afrec.org/en/resources [Google Scholar]
  5. Government of Malawi, Malawi Integrated Energy Plan: Electrification Report, Lilongwe (2022). Available: https://www.energy.gov.mw/ [Google Scholar]
  6. Government of Malawi, National Energy Policy 2018 (Malawi Government Press, Lilongwe, 2018) [Google Scholar]
  7. Government of Malawi, 2018 Malawi Population and Housing Census – Main report, Zomba (2018) [Google Scholar]
  8. Department of Energy Affairs, Feasibility Study for the Manufacturing of Renewable Energy Systems Components in Malawi, Lilongwe (2019) [Google Scholar]
  9. Government of Malawi, Biomass Energy Strategy for Malawi Inception Report, no. March (Government Press, Lilongwe, 2008) [Google Scholar]
  10. World Health Organisation, Understanding Data in the World Health Statistics Series (2018). Available: http://www.who [Google Scholar]
  11. A.H. Tesfay, M.B. Kahsay, O.J. Nydal, Numerical and experimental analysis of solar injera baking with a PCM heat storage, Momona Ethiop. J. Sci. 11, 1 (2019) [CrossRef] [Google Scholar]
  12. Government of Malawi, Sustainable Energy for ALL (SE4ALL) Action Agenda for Malawi (Government Press, Lilongwe, 2017). Available: http://www.energy.gov.mw [Google Scholar]
  13. A. Naluwagga, M.S. Abbo, M. Tesfamichael, Uganda’s cooking energy sector: A Review (2022) [Google Scholar]
  14. M. Wentzel, A. Pouris, The development impact of solar cookers: a review of solar cooking impact research in South Africa, Energy Policy 35, 1909–1919 (2007) [CrossRef] [Google Scholar]
  15. L. Nkhonjera, S. Hameer, M.B. Kosamu, Towards sustainable energy utilisation: an analysis of various cooking fuel options in Malawi, J. Mech. Eng. Res. 5, 68–75 (2013) [CrossRef] [Google Scholar]
  16. Y. Kalolo, J.S. Mlantho, K.C. Mwale, T.C. Nammelo, Design, construction and performance evaluation of solar cookers, Int. J. Inov. Sci. Res. Technol. 7, 1673–1679 (2022) [Google Scholar]
  17. U. Sahoo, State-of-the-Art Concentrated Solar Thermal Technologies for End Use Applications, in A Polygeneration Process Concept for Hybrid Solar and Biomass Power Plant: Simulation, Modelling and Optimization, 1st ed. (John Wiley & Sons, Inc., Hoboken & Beverly, 2018), pp. 11–63 [Google Scholar]
  18. R.M. Muthusivagami, R. Velraj, R. Sethumadhavan, Solar cookers with and without thermal storage — a review, Renew. Sustain. Energy Rev. 14, 691–701 (2010) [CrossRef] [Google Scholar]
  19. S.S. Junare, Scheffler dish and its applications, in International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) (2017), pp. 1–9 [Google Scholar]
  20. C.Z.M. Kimambo, Development and performance testing of solar cookers, J. Energy South. Africa 18, 41–51 (2007) [CrossRef] [Google Scholar]
  21. H. Cherif, A. Ghomrassi, J. Sghaier, H. Mhiri, P. Bournot, A receiver geometrical details effect on a solar parabolic dish collector performance, Energy Rep. 5, 882–897 (2019) [CrossRef] [Google Scholar]
  22. S. Sahu, N.S. Kumar, K.A. Singh, Proceedings of the on advances in conference 7th international energy research, in Springer Proceedings in Energy (2021), pp. 747–756 [Google Scholar]
  23. M. Aramesh et al., A review of recent advances in solar cooking technology, Renew. Energy 140, 419–435 (2019) [CrossRef] [Google Scholar]
  24. B.A. Mekonnen, K.W. Liyew, M.T. Tigabu, Solar cooking in Ethiopia: experimental testing and performance evaluation of SK14 solar cooker, Case Stud. Therm. Eng. 22, 100766 (2020) [Google Scholar]
  25. D. Malwad, V. Tungikar, Thermal performance analysis of glazed and unglazed receiver of Scheffler dish, J. Therm. Eng. 6, 786–801 (2020) [CrossRef] [Google Scholar]
  26. D. Malwad, V. Tungikar, Experimental performance analysis of an improved receiver for Scheffler solar concentrator, SN Appl. Sci. 2, 1–14 (2020) [Google Scholar]
  27. S. Kumar, V. Yadav, U. Sahoo, S.K. Singh, Experimental investigation of 16 square meter Scheffler concentrator system and its performance assessments for various regions of India, Therm. Sci. Eng. Prog. 10, 103 (2019) [CrossRef] [Google Scholar]
  28. S. Das, S.S. Solomon, A. Saini, Thermal analysis of paraboloid dish type solar cooker, J. Phys. Conf. Ser. 1276, 012055 (2019) [CrossRef] [Google Scholar]
  29. A.O. Onokwai, U.C. Okonkwo, C.O. Osueke, C.E. Okafor, T.M.A. Olayanju, S.O. Dahunsi, Design, modelling, energy and exergy analysis of a parabolic cooker, Renew. Energy 142, 497–510 (2019) [CrossRef] [Google Scholar]
  30. M. Kumar, D. Singh, Performance evaluation of parabolic dish type solar cooker using different materials for cooking vessel, Int. J. Eng. Technol. Sci. Res. 5, 210–216 (2018) [Google Scholar]
  31. A.A. Badran, I.A. Yousef, N.K. Joudeh, R. Al Hamad, H. Halawa, H.K. Hassouneh, Portable solar cooker and water heater, Energy Convers. Manag. 51, 1605–1609 (2010) [CrossRef] [Google Scholar]
  32. O.O. Craig, A Stand-alone Parabolic Dish Solar Cooker for African Conditions (2015) [Google Scholar]
  33. A. Chandak, S.K. Somani, P.M. Suryaji, Comparative analysis of SK-14 and PRINCE-15 solar concentrators, Proc. World Congr. Eng. 2011, WCE 2011 3 (2011), pp. 1949–1951 [Google Scholar]
  34. N. Sendhil Kumar, K.S. Reddy, Comparison of receivers for solar dish collector system, Energy Convers. Manag. 49, 812–819 (2008) [CrossRef] [Google Scholar]
  35. S.C. Mullick, T.C. Kandpal, S. Kumar, Thermal test procedure for a paraboloid concentrator solar cooker, Sol. Energy 46, 139–144 (1991) [CrossRef] [Google Scholar]
  36. S. Shaw, Development of a Comparative Framework for Evaluating the Performance of Solar Cooking Devices: Combining Ergonomic, Thermal, and Qualitative Data into an Understandable, Reproducible, and Rigorous Testing Method (2003) [Google Scholar]
  37. A. Kundapur, C.V. Sudhir, Proposal for new world standard for testing solar cookers, J. Eng. Sci. Technol. 4, 272–281 (2009) [Google Scholar]
  38. S.C. Mullick, T.C. Kandpal, A. Saxena, Thermal test procedure for box-type solar cookers, Sol. Energy 39, 353–360 (1987) [CrossRef] [Google Scholar]
  39. B. Ayalew, K. Wudineh, Case studies in thermal engineering solar cooking in Ethiopia: experimental testing and performance evaluation of SK14 solar cooker, Case Stud. Therm. Eng. 22, 1–11 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.