Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 8, 2023
Article Number 3
Number of page(s) 12
DOI https://doi.org/10.1051/rees/2023001
Published online 26 April 2023
  1. B. Waring, M. Neumann, I.C. Prentice, M. Adams, P. Smith, M. Siegert, Forests and decarbonization − roles of natural and planted forests, Front. Forests Glob. Change. 3, 6 (2020) [Google Scholar]
  2. A. Androff, Trees Are Climate Change, Carbon Storage Heroes, USDA Forest Service, Forest Products Laboratory—Lab Notes. (2021) [Google Scholar]
  3. V. Pechanec, F. Stržínek, J. Purkyt, L. Šterbová, P. Cudlín, Carbon stock in forest aboveground biomass − Comparison based on Landsat data, Central Eur. Forestry J. 63, 126–132 (2017) [CrossRef] [Google Scholar]
  4. K. Abbass, M.Z. Qasim, H. Song, M. Murshed, H. Mahmood, I. Younis, A review of the global climate change impacts, adaptation, and sustainable mitigation measures, Environ. Sci. Pollut. Res. 29, 42539–42559 (2022) [CrossRef] [Google Scholar]
  5. IPCC, Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (2022) [Google Scholar]
  6. R. Aabeyir, S. Adu-Bredu, W.A. Agyare, M.J.C. Weir, Allometric models for estimating aboveground biomass in the tropical woodlands of Ghana, West Africa, J. Forest Ecosyst. 7, 1–23 (2020) [Google Scholar]
  7. A.J. Nath, R. Lal, A.K. Das, Managing woody bamboos for carbon farming and carbon trading, Glob. Ecol. Conserv. 3, 654–663 (2015) [CrossRef] [Google Scholar]
  8. E.J. Zachariah, B. Sabulal, D.N.K. Nair, A.J. Johnson, C.S.P. Kumar, Carbon dioxide emission from bamboo culms, Plant Biol. 18, 400–405 (2016) [CrossRef] [Google Scholar]
  9. B. Wang, W.J. Wei, C.J. Liu, W.Z. You, X. Niu, R.Z. Man, Biomass and carbon stock in moso bamboo forests in subtropical China: characteristics and implications, J. Trop. Forest Sci. 25, 137–148 (2013) [Google Scholar]
  10. X. Song, G. Zhou, H. Jiang, S. Yu, J. Fu, W. Li, W. Wang, Z. Ma, C. Peng, Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges, Environ. Rev. 19, 418–428 (2011) [CrossRef] [Google Scholar]
  11. Y. Kühl, G. Henley, L. Yiping, The Climate Change Challenge and Bamboo: Mitigation and Adaptation − INBAR Working Paper (2013). Available at https://resource.inbar.int/upload/file/1489546834.pdf (accessed 31.12.2018) [Google Scholar]
  12. International Network for Bamboo and Rattan (INBAR), Bamboo for Africa: A strategic resource to drive the continent's Green Economy, Beijing (2015). Available at https://www.inbar.int/resources/inbar_publications/policy-synthesis-report-2-bamboo-for-africa-a-strategic-resource-to-drive-the-continents-green-economy/ [Google Scholar]
  13. E. Ebanyenle, A.A. Oteng-Amoako, Site differences in morphological and physical properties of Bambusa vulgaris grown in Ghana, Discov. Innov. 19, 222–225 (2007) [Google Scholar]
  14. T. Bahru, Y. Ding, A review on bamboo resource in the african region: a call for special focus and action, Int. J. Forestry Res. 2021, 23 (2021) [CrossRef] [Google Scholar]
  15. M. Amoah, F. Assan, P.K. Dadzie, Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica Bobiri forest reserve of Ghana, J. Sustain. Forestry 39, 113–136 (2019) [Google Scholar]
  16. Y. Pan, R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L. Lewis, J.G. Canadell, P. Ciais, R.B. Jackson, S.W. Pacala, A.D. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes, A large and persistent carbon sink in the world's forests, Science (1979) 333, 988–993 (2011) [Google Scholar]
  17. N.N. Barnabas, R. Kaam, L. Zapfack, M. Tchamba, D.C. Chimi, Bamboo diversity and carbon stocks of dominant species in different agro-ecological zones in Cameroon, Afr. J. Environ. Sci. Technol. 14, 290–300 (2020) [CrossRef] [Google Scholar]
  18. M.S.I. Sohel, M. Alamgir, S. Akhter, M. Rahman, Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development, Land Use Policy 49, 142–151 (2015) [CrossRef] [Google Scholar]
  19. A. Ndiaye, M.S. Diallo, D. Niang, Y.K. Gassama-Dia, In vitro regeneration of adult trees of Bambusa vulgaris, Afr. J. Biotechnol. 5, 1245–1248 (2006) [Google Scholar]
  20. B.N. Nfornkah, R. Kaam, T. Martin, Z. Louis, C.D. Cedric, G.W. Forje, T. Armand Delanot, T. Mélanie Rosine, A. Jean Baurel, T. Loic, Z.T. Guy Herman, K. Yves, D.S. Vartent, Culm allometry and carbon storage capacity of Bambusa vulgaris Schrad. ex J.C. Wend L. in the tropical evergreen rain forest of Cameroon, J. Sustain. Forestry 40, 622–638 (2021) [CrossRef] [Google Scholar]
  21. E. Ebanyenle, A.A. Oteng-Amoako, Site differences in morphological and physical properties of Bambusa vulgaris grown in Ghana, Discov. Innov. 19, 222–225 (2007) [Google Scholar]
  22. S. Islam, M. Alamgir, S. Akhter, Land use policy carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: implications for policy development, Land Use Policy 49, 142–151 (2015) [CrossRef] [Google Scholar]
  23. T.V. Borisade, N.O. Uwalaka, A.B. Rufai, A.I. Odiwe, G.A.D. Junior, Carbon stock assessment of Bambusa vulgaris stands in a regenerating secondary rainforest, thirty-four years after ground fire in Ile-Ife, Nigeria, J. Bamboo Rattan. 17, 11–25 (2018) [Google Scholar]
  24. C. Opoku-Kwarteng, E.N.A. Tagoe, The Bobiri Forest Reserve and Butterfly Sanctuary − A home of colour and beauty, J. Indigen. Shamanic Stud. 2, 46–52 (2021) [Google Scholar]
  25. P. Singnar, M.C. Das, G.W. Sileshi, B. Brahma, A.J. Nath, A.K. Das, Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera, For. Ecol. Manag. 395, 81–91 (2017) [CrossRef] [Google Scholar]
  26. M.B. Araújo, R.G. Pearson, W. Thuiller, M. Erhard, Validation of species-climate impact models under climate change, Glob. Chang Biol. 11, 1504–1513 (2005) [CrossRef] [Google Scholar]
  27. G.B. Williamson, M.C. Wiemann, Measuring wood specific gravity… correctly, Am. J. Bot. 97, 519–524 (2010) [CrossRef] [Google Scholar]
  28. S. Adu-Bredu, A. Duah-gyamfi, J.K. Govina, F. Ibrahim, Biomass Allometric Models for Bambusa vulgaris in Ghana (2020) [Google Scholar]
  29. M. Meragiaw, B.R. Singh, Z. Woldu, V. Martinsen, Carbon stocks of above − And belowground tree biomass in Kibate Forest around Wonchi Crater Lake, Central Highland of Ethiopia, PLoS One 16, 15 (2021) [Google Scholar]
  30. J. Penman, M. Gytarsky, T. Hiraishi, W. Irving, T. Krug, 2006 IPCC − Guidelines for National Greenhouse Gas Inventories, 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html [Google Scholar]
  31. INBAR, A Manual for Bamboo Forest Biomass and Carbon Assessment (2019) 146 [Google Scholar]
  32. IUCN/PACO, Parks and reserves of Ghana: Management Effectiveness Assessment of Protected Areas, 2010. https://portals.iucn.org/library/sites/library/files/documents/2010-073.pdf [Google Scholar]
  33. A.J. Nath, G.W. Sileshi, A.K. Das, Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India, Land Use Policy 75, 191–200 (2018) [CrossRef] [Google Scholar]
  34. A.C. Waikhom, A.J. Nath, P.S. Yadava, Aboveground biomass and carbon stock in the largest sacred grove of Manipur, Northeast India, J. For. Res. (Harbin) 29, 425–428 (2018) [CrossRef] [Google Scholar]
  35. T.G. Morais, R.F.M. Teixeira, M. Figueiredo, T. Domingos, The use of machine learning methods to estimate aboveground biomass of grasslands: A review, Ecol. Indic. 130, 108081 (2021) [CrossRef] [Google Scholar]
  36. P.K. Pathak, H. Kumar, G. Kumari, H. Bilyaminu, Biomass production potential in different species of, The Ecoscan. 10, 41–43 (2016) [Google Scholar]
  37. T.-M. Yen, J.-S. Lee, Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model, For Ecol Manag. 261, 995–1002 (2011) [CrossRef] [Google Scholar]
  38. H. Zhang, S. Zhuang, B. Sun, H. Ji, C. Li, S. Zhou, Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model, Forestry 87, 674–682 (2014) [CrossRef] [Google Scholar]
  39. L. Puangchit, S.M. Hnin, S. Sungkaew, Allometric equations for estimating the aboveground biomass of a 14-year-old bamboo plantation at Moeswe Research Station, Myanmar, J. Trop. Forest Sci. 3, 1–19 (2019) [Google Scholar]
  40. M. Amoah, F. Assan, P.K. Dadzie, Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var. vitata plantations in the Bobiri forest reserve of Ghana, J. Sustain. For. 39, 113–136 (2020) [CrossRef] [Google Scholar]
  41. T.-M. Yen, Y.-J. Ji, J.-S. Lee, Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model, For. Ecol. Manag. 260, 339–344 (2010) [CrossRef] [Google Scholar]
  42. D.W. Sintayehu, A. Belayneh, N. Dechassa, Aboveground carbon stock is related to land cover and woody species diversity in tropical ecosystems of Eastern Ethiopia, Ecol. Process. 9, 1–10 (2020) [CrossRef] [Google Scholar]
  43. M. Asigbaase, E. Dawoe, B.H. Lomax, S. Sjogersten, Biomass and carbon stocks of organic and conventional cocoa agroforests, Ghana, Agric. Ecosyst. Environ. 306, 11 (2021) [Google Scholar]
  44. S. Adu-Bredu, M.K. Abekoe, E. Tachie-Obeng, P. Tshakert, Carbon Stock under Four Land-use Systems in three varied ecological Zones in Ghana, Afr. Carbon Cycle. 104, 105–113 (2008) [Google Scholar]
  45. S. Moore, S. Adu-Bredu, A. Duah-Gyamfi, S.D. Addo-Danso, F. Ibrahim, A.T. Mbou, A. de Grandcourt, R. Valentini, G. Nicolini, G. Djagbletey, K. Owusu-Afriyie, A. Gvozdevaite, I. Oliveras, M.C. Ruiz-Jaen, Y. Malhi, Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa, Glob. Chang Biol. 24, e496–e510 (2018) [CrossRef] [Google Scholar]
  46. J.Q. Yuen, T. Fung, A.D. Ziegler, Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties, For. Ecol. Manag. 393, 113–138 (2017) [CrossRef] [Google Scholar]
  47. M. Pfeifer, V. Lefebvre, E. Turner, J. Cusack, M.S. Khoo, V.K. Chey, M. Peni, R.M. Ewers, Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environ. Res. Lett. 10, 11 (2015) [Google Scholar]
  48. X. Xu, P. Xu, J. Zhu, H. Li, Z. Xiong, Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions, Sci. Total Environ. 814, 152697 (2022) [CrossRef] [Google Scholar]
  49. C.M. Hoover, J.E. Smith, Current aboveground live tree carbon stocks and annual net change in forests of conterminous United States, Carbon Balance Manag. 16, 1–12 (2021) [CrossRef] [Google Scholar]
  50. S. Saeed, S. Yujun, M. Beckline, L. Chen, B. Zhang, A. Ahmad, A. Mannan, A. Khan, A. Iqbal, Forest edge effect on biomass carbon along altitudinal gradients in Chinese Fir (Cunninghamia lanceolata): a study from Southeastern China, Carbon Manag. 10, 11–22 (2019) [CrossRef] [Google Scholar]
  51. A. Adu-Poku, G.Y. Obeng, E. Mensah, S. Adu-Bredu, Dataset for the aboveground biomass and vegetative carbon dioxide stocks of Bambusa vulgaris in Ghana's Bobiri Forest, Mendeley Data. 1, 1 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.