Open Access
Renew. Energy Environ. Sustain.
Volume 7, 2022
Article Number 25
Number of page(s) 20
Published online 24 November 2022
  1. United Nations, The World’s Cities in 2016 (2016) [Google Scholar]
  2. A. Camero, E. Alba, Smart city and information technology: A review, Cities 93, 84–94 (2019) [Google Scholar]
  3. A. Buckman, M. Mayfield, S. Beck, What is a Smart Building? Smart Sustain. Built Environ. 3 , 92–109 (2014) [Google Scholar]
  4. B. Dong, V. Prakash, F. Feng, Z. O’Neill et al., A review of smart building sensing system for better indoor environment control, Energy Build. 199 29–46 (2019) [Google Scholar]
  5. D. Minoli, K. Sohraby, B. Occhiogrosso, IoT considerations, requirements, and architectures for smart buildings—energy optimizatiozn and next-generation building management systems, IEEE Internet Things J. 1 , 1 (2017) [Google Scholar]
  6. J. Kleissl, Y. Agarwal, Cyber-physical energy systems: focus on smart buildings, in Proceedings of the 47th Design Automation Conference on - DAC ’10, presented at the the 47th Design Automation Conference (ACM Press, Anaheim, CA, 2010) [Google Scholar]
  7. D. Kolokotsa, The role of smart grids in the building sector, Energy Build. 116 , 703–708 (2016) [Google Scholar]
  8. R. Coppola, M. Morisio, Connected car: technologies, issues, future trends, ACM Comput. Surv. 49 , 3 (2016) [Google Scholar]
  9. M.V. Moreno, M.A. Zamora, A.F. Skarmeta, User-centric smart buildings for energy sustainable smart cities, Trans. Emerg. Telecommun. Technolog. 25 , 2 (2013) [Google Scholar]
  10. A.J. Cheng, B. Tarroja, B. Shaffer, S. Samuelsen, Comparing the emissions benefits of centralized vs. decentralized electric vehicle smart charging approaches: A case study of the year 2030 California electric grid, J. Power Sources 401 , 175–185 (2018) [CrossRef] [Google Scholar]
  11. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, P. Dehghanian, PHEVs centralized/decentralized charging control mechanisms: Requirements and impacts, in 2013 North American Power Symposium (NAPS) , presented at the 2013 North American Power Symposium (NAPS) (IEEE, KS, USA, 2013) [Google Scholar]
  12. C. Ahn, C.T. Li, H. Peng, Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid, J. Power Sources 196 , 23 (2011) [Google Scholar]
  13. H. Xing, M. Fu, Z. Lin, Y. Mou, Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids, IEEE Trans. Power Syst. 31 , 5 (2016) [Google Scholar]
  14. A. Bedir, B. Ozpineci, J.E. Christian, The impact of plug-in hybrid electric vehicle interaction with energy storage and solar panels on the grid for a zero energy house, in IEEE PES T&D 2010 presented at the IEEE PES T&D 2010 (IEEE, New Orleans, LA, USA, 2010) [Google Scholar]
  15. F. Calise, F.L. Cappiello, A. Cartenì, M. Dentice d’Accadia, M. Vicidomini, A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy), Renew. Sustain. Energy Rev. 111 , 97–114 (2019) [CrossRef] [Google Scholar]
  16. M. Caruso, A.O. Di Tommaso, A. Imburgia, M. Longo, R. Miceli, P. Romano, G. Salvo, G. Schettino, C. Spataro, F. Viola, in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA) , presented at the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA) (IEEE, Birmingham, UK, 2016) [Google Scholar]
  17. K.E. Forrest, B. Tarroja, L. Zhang, B. Shaffer, S. Samuelsen, Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards, J. Power Sources 336 , 63–74 (2016) [CrossRef] [Google Scholar]
  18. B. Drysdale, J. Wu, N. Jenkins, Flexible demand in the GB domestic electricity sector in 2030, Appl. Energy 139 , 281–290 (2015) [Google Scholar]
  19. M. Heleno, M.A. Matos, J.A.P. Lopes, J.P. Iria, Estimating the flexible residential load using appliances availability, in 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014) , presented at the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO) (IEEE, Langkawi, Malaysia, 2014) [Google Scholar]
  20. F. Mancini, G. Lo Basso, L. De Santoli, Energy use in residential buildings: characterisation for identifying flexible loads by means of a questionnaire survey, Energies 12 , 11 (2019) [Google Scholar]
  21. D. Papadaskalopoulos, G. Strbac, Decentralized optimization of flexible loads operation in electricity markets, in 2013 IEEE Grenoble Conference , presented at the 2013 IEEE Grenoble PowerTech (IEEE, Grenoble, France, 2013) [Google Scholar]
  22. A. van Stiphout, J. Engels, D. Guldentops, G. Deconinck, Quantifying the flexibility of residential electricity demand in 2050: a bottom-up approach, in 2015 IEEE Eindhoven PowerTech presented at the 2015 IEEE Eindhoven PowerTech (IEEE, Eindhoven, Netherlands, 2015) [Google Scholar]
  23. A. Di Giorgio, F. Liberati, S. Canale, Electric vehicles charging control in a smart grid: A model predictive control approach, Control Eng. Practice 22 , 147–162 (2014) [CrossRef] [Google Scholar]
  24. S. Gottwalt, W. Ketter, C. Block, J. Collins, C. Weinhardt, Demand side management—A simulation of household behavior under variable prices, Energy Policy 39 , 12 (2011) [Google Scholar]
  25. K. Steriotis, G. Tsaousoglou, N. Efthymiopoulos, P. Makris, E. Varvarigos (Manos), A novel behavioral real time pricing scheme for the active energy consumers’ participation in emerging flexibility markets, Energy Grids Netw. 16 , 14–27 (2018) [Google Scholar]
  26. J.-M. Clairand, J. Rodríguez-García, C. Álvarez-Bel, Electric vehicle charging strategy for isolated systems with high penetration of renewable generation, Energies 11 , 11 (2018) [Google Scholar]
  27. L. Drude, L.C. Pereira Junior, R. Rüther, Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment, Renew. Energy 68 , 443–451 (2014) [CrossRef] [Google Scholar]
  28. F. Fattori, N. Anglani, G. Muliere, Combining photovoltaic energy with electric vehicles, smart charging and vehicle-to-grid, Sol. Energy 110 , 438–451 (2014) [CrossRef] [Google Scholar]
  29. R. Figueiredo, P. Nunes, M.C. Brito, The feasibility of solar parking lots for electric vehicles, Energy 140 , 1182–1197 (2017) [CrossRef] [Google Scholar]
  30. M. van der Kam, W. van Sark, Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study, Appl. Energy 152 , 20–30 (2015) [CrossRef] [Google Scholar]
  31. H. Kikusato, K. Mori, S. Yoshizawa, Y. Fujimoto, H. Asano, Y. Hayashi, A. Kawashima, S. Inagaki, T. Suzuki, Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid energy management systems, IEEE Trans. Smart Grid. 10 , 3 (2019) [Google Scholar]
  32. P. Nunes, T. Farias, M.C. Brito, Enabling solar electricity with electric vehicles smart charging, Energy 87 , 10–20 (2015) [CrossRef] [Google Scholar]
  33. A.Y. Saber, G.K. Venayagamoorthy, Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles, IEEE Syst. J. 6 , 1 (2012) [Google Scholar]
  34. A.R. Bhatti, Z. Salam, B. Sultana, N. Rasheed, A.B. Awan, U. Sultana, M. Younas, Optimized sizing of photovoltaic grid-connected electric vehicle charging system using particle swarm optimization, Int. J. Energy Res. 43 , 1 (2019) [Google Scholar]
  35. D. Keiner, M. Ram, L.D.S.N.S. Barbosa, D. Bogdanov, C. Breyer, Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050, Solar Energy 185 , 406–423 (2019) [CrossRef] [Google Scholar]
  36. D. Mazzeo, Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis, Energy 168 , 310–331 (2019) [CrossRef] [Google Scholar]
  37. Pecan Street Project, Pecan Street (2016). Available at: (accessed April 2018) [Google Scholar]
  38. AnyLogic, Why AnyLogic simulation software? Available at: (accessed March 2018) [Google Scholar]
  39. J. Wang, H. Lu, H. Peng, System dynamics model of urban transportation system and its application, J. Transp. Syst. Eng. Inform. Technol. 8 , 3 (2008) [Google Scholar]
  40. R. Oliva, Model calibration as a testing strategy for system dynamics models, Eur. J. Oper. Res. 151 , 3 (2003) [Google Scholar]
  41. National Renewable Energy Laboratory, Transportation Secure Data Center. Available at: (accessed August 2020) [Google Scholar]
  42. Austin Energy, FY 2019 Electric Tariff. Value-of-Solar, Austin, TX (2018) [Google Scholar]
  43. Austin Energy, City of Austin. Electric Tariff. Standard Rates. Austin, TX (2015) [Google Scholar]
  44. OptTek, How the OptQuest engine works (2019). Available at:,_and_.NET_Developer_s_Guide.htm#How_the_OptQuest_Engine_works.htm (accessed May 2019) [Google Scholar]
  45. S. Schlömer, Annex III: Technology-specific cost and performance parameters, in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2018), pp 1335 [Google Scholar]
  46. ERCOT, Generation ERCOT (2020). Available at: (accessed April 2020) [Google Scholar]
  47. Tesla, Powerwall (2020). Available at: (accessed June 2020) [Google Scholar]
  48. SEIA, Solar Market Insight 2015 Q4 (2016). Available at: (accessed February 2020) [Google Scholar]
  49. KBB, Kelley Blue Book (2020). Available at: (accessed February 2020) [Google Scholar]
  50. Daymark Energy Advisors, Benefits and Costs of Utility Scale and Behind the Meter Solar Resources in Maryland, 2018 [Google Scholar]
  51. DSIRE USA, Programs DSIRE USA (2020). Available at: (accessed June 2020) [Google Scholar]
  52. J.T. Smith, G. Patty, K. Colton, Net Metering in the States, Utah (2018) [Google Scholar]
  53. Public Power, Storage with solar not yet economic, Austin Energy finds Public Power (2019). Available at: (accessed June 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.