Open Access
Renew. Energy Environ. Sustain.
Volume 7, 2022
Article Number 24
Number of page(s) 17
Published online 04 October 2022
  1. Global Wind Energy Council. Gwec| global wind report 2021 (2021) [Google Scholar]
  2. A.S. Darwish, R. Al-Dabbagh, Wind energy state of the art: present and future technology advancements, Renew. Energy Environ. Sustain. 5 , 7 (2020) [Google Scholar]
  3. L. Nguyen, M. Metzger, Comparison of forecasting methods for vertical axis wind turbine applications in an urban/suburban area, J. Renew. Sustain. Energy 9 , 023302 (2017) [CrossRef] [Google Scholar]
  4. M. Lackner, A. Rogers, J. Manwell, Uncertainty analysis in wind resource assessment and wind energy production estimation, in 45th AIAA Aerospace Sciences Meeting and Exhibit (2007) p. 1222 [Google Scholar]
  5. M.A. Lackner, A.L. Rogers, J.F. Manwell, Uncertainty analysis in mcp-based wind resource assessment and energy production estimation, J. Solar Energy Eng. 130 , 031006 (2008) [CrossRef] [Google Scholar]
  6. A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, E. Feitosa, A review on the young history of the wind power short-term prediction, Renew. Sustain. Energy Rev. 12 , 1725–1744 (2008) [CrossRef] [Google Scholar]
  7. A.M. Foley, P.G. Leahy, A. Marvuglia, E.J. McKeogh, Current methods and advances in forecasting of wind power generation, Renew. Energy 37 , 1–8 (2012) [CrossRef] [Google Scholar]
  8. I. Okumus, A. Dinler, Current status of wind energy forecasting and a hybrid method for hourly predictions, Energy Convers. Manag. 123 , 362–371 (2016) [CrossRef] [Google Scholar]
  9. R.C. Sreelekshmi, K. Asokan, K. Satheesh Kumar, Deterministic nature of the underlying dynamics of surface wind fluctuations, Ann. Geophys. 30 , 1503 (2012) [CrossRef] [Google Scholar]
  10. G.V. Drisya, D.C. Kiplangat, K. Asokan, K. Satheesh Kumar, Deterministic prediction of surface wind speed variations, Ann. Geophys. 32 , 1415–1425 (2014) [CrossRef] [Google Scholar]
  11. G.V. Drisya, K. Asokan, K. Satheesh Kumar, Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations, Renew. Energy 119 , 540–550 (2018) [CrossRef] [Google Scholar]
  12. A. Di Piazza, M.C. Di Piazza, G. Vitale, Solar and wind forecasting by narx neural networks, Renew. Energy Environ. Sustain. 1 , 39 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  13. L. Fugon, J. Juban, G. Kariniotakis, Data mining for wind power forecasting, in European Wind Energy Conference & Exhibition EWEC 2008 , EWEC (2008) 6 pages [Google Scholar]
  14. Z.O. Olaofe, A 5-day wind speed & power forecasts using a layer recurrent neural network (lrnn), Sustain. Energy Technolog. Assess. 6 , 1–24 (2014) [CrossRef] [Google Scholar]
  15. S.R. Nandha Kishore, V. Vanitha, Wind speed forecasting for grid code compliance, J. Renew. Sustain. Energy 5 , 063125 (2013) [CrossRef] [Google Scholar]
  16. A. Lahouar, J. Ben Hadj Slama, Hour-ahead wind power forecast based on random forests, Renew. Energy 109 , 529–541 (2017) [CrossRef] [Google Scholar]
  17. A. Meng, J. Ge, H. Yin, S. Chen, Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm, Energy Convers. Manag. 114 , 75–88 (2016) [CrossRef] [Google Scholar]
  18. Q. Han, F. Meng, T. Hu, F. Chu, Non-parametric hybrid models for wind speed forecasting, Energy Convers. Manag. 148 , 554–568 (2017) [CrossRef] [Google Scholar]
  19. J. Wang, Y. Song, F. Liu, R. Hou, Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models, Renew. Sustain. Energy Rev. 60 , 960–981 (2016) [CrossRef] [Google Scholar]
  20. L. Xiao, J. Wang, Y. Dong, J. Wu, Combined forecasting models for wind energy forecasting: a case study in China, Renew. Sustain. Energy Rev. 44 , 271–288 (2015) [CrossRef] [Google Scholar]
  21. D.C. Kiplangat, K. Asokan, K. Satheesh Kumar, Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition, Renew. Energy 93 , 38–44 (2016) [CrossRef] [Google Scholar]
  22. H.S. Dhiman, D. Deb, J.M. Guerrero, Hybrid machine intelligent svr variants for wind forecasting and ramp events, Renew. Sustain. Energy Rev. 108 , 369–379 (2019) [CrossRef] [Google Scholar]
  23. D. Liu, D. Niu, H. Wang, L. Fan, Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm, Renew. Energy 62 , 592–597 (2014) [CrossRef] [Google Scholar]
  24. N.S. Pearre, L.G. Swan, Statistical approach for improved wind speed forecasting for wind power production, Sustain. Energy Technolog. Assess. 27 , 180–191 (2018) [CrossRef] [Google Scholar]
  25. J. Browell, D.R. Drew, K. Philippopoulos, Improved very short term spatio temporal wind forecasting using atmospheric regimes, Wind Energy 0 , 1–12 (2017) [Google Scholar]
  26. D. Kim, J. Hur, Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method, Energy 157 , 211–226 (2018) [CrossRef] [Google Scholar]
  27. H. do Nascimento Camelo, P. Sérgio Lucio, J. Bosco Verçosa Leal Junior, P. Cesar Marques de Carvalho, A hybrid model based on time series models and neural network for forecasting wind speed in the brazilian northeast region, Sustain. Energy Technolog. Assess. 28 , 65–72 (2018) [CrossRef] [Google Scholar]
  28. Z. Yang, J. Wang, A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm, Energy 160 , 87–100 (2018) [CrossRef] [Google Scholar]
  29. A. Khosravi, R.N.N. Koury, L. Machado, J.J.G. Pabon, Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system, Sustain. Energy Technolog. Assess. 25 , 146–160 (2018) [CrossRef] [Google Scholar]
  30. M. Optis, J. Perr-Sauer, The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production, Renew. Sustain. Energy Rev. 112 , 27–41 (2019) [CrossRef] [Google Scholar]
  31. N. Ahmed, A.L.C. Barczak, M.A. Rashid, T. Susnjak, Runtime prediction of big data jobs: performance comparison of machine learning algorithms and analytical models, J. Big Data 9 , 1–31 (2022) [CrossRef] [Google Scholar]
  32. P. Valsaraj, D.A. Thumba, K. Satheesh Kumar, Spatio-temporal independent applicability of one time trained machine learning wind forecast models: a promising case study from the wind energy perspective, Int. J. Sustain. Energy 0 , 1–19 (2022) [Google Scholar]
  33. LLC Global Energy Concepts, Windpact turbine design scaling studies technical area 3-self-erecting tower and nacelle feasibility: March 2000-march 2001. Technical report, National Renewable Energy Lab., Golden, CO (US) (2001) [Google Scholar]
  34. T.M. Mitchell, Artificial neural networks, Mach. Learn. 45 , 81–127 (1997) [Google Scholar]
  35. F. Bañuelos-Ruedas, C. Angeles-Camacho, S. Rios-Marcuello, Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region, in Wind Farm-Technical Regulations, Potential Estimation and Siting Assessment (InTech, 2011) [Google Scholar]
  36. A. Vasel-Be-Hagh, C.L. Archer, Wind farm hub height optimization, Appl. Energy 195 , 905–921 (2017) [CrossRef] [Google Scholar]
  37. G. Gualtieri, S. Secci, Comparing methods to calculate atmospheric stability-dependent wind speed profiles: a case study on coastal location, Renew. Energy 36 , 2189–2204 (2011) [CrossRef] [Google Scholar]
  38. J.O. Counihan, Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972, Atmos. Environ. (1967) 9 , 871–905 (1975) [CrossRef] [Google Scholar]
  39. D.A. Spera, Introduction to modern wind turbines (ASME Press, New York, 1994) [Google Scholar]
  40. J.D. Pneumatikos, An experimental test of the empirical formulae commonly used to represent wind speed profiles near the ground, Renew. Energy 1 , 623–628 (1991) [CrossRef] [Google Scholar]
  41. C. Herrero-Novoa, I.A. Pérez, M. Luisa Sánchez, M. Ángeles Garcia, N. Pardo, B. Fernández-Duque, Wind speed description and power density in northern spain, Energy 138 , 967–976 (2017) [CrossRef] [Google Scholar]
  42. D. Solyali, M. Altunç, S. Tolun, Z. Aslan, Wind resource assessment of northern cyprus, Renew. Sustain. Energy Rev. 55 , 180–187 (2016) [CrossRef] [Google Scholar]
  43. M.R. Patel, Wind and solar power systems: design, analysis, and operation (CRC Press, 2005) [Google Scholar]
  44. M.R. Elkinton, A.L. Rogers, J.G. McGowan, An investigation of wind-shear models and experimental data trends for different terrains, Wind Eng. 30 , 341–350 (2006) [CrossRef] [Google Scholar]
  45. R.H. Kirchhoff, F.C. Kaminsky, Wind shear measurements and synoptic weather categories for siting large wind turbines, J. Wind Eng. Ind. Aerodyn. 15 , 287–297 (1983) [CrossRef] [Google Scholar]
  46. R. Istchenko, B. Turner, Extrapolation of wind profiles using indirect measures of stability, Wind Eng. 32 , 433–438 (2008) [CrossRef] [Google Scholar]
  47. R.J. Barthelmie, The effects of atmospheric stability on coastal wind climates, Meteorolog. Appl. 6 , 39–47 (1999) [CrossRef] [Google Scholar]
  48. P. Valsaraj, D. Alex Thumba, K. Asokan, K. Satheesh Kumar, Symbolic regression-based improved method for wind speed extrapolation from lower to higher altitudes for wind energy applications, Appl. Energy 260 , 114270 (2020) [CrossRef] [Google Scholar]
  49. M.L. Kubik, P.J. Coker, J.F. Barlow, C. Hunt, A study into the accuracy of using meteorological wind data to estimate turbine generation output, Renew. Energy 51 , 153–158 (2013) [CrossRef] [Google Scholar]
  50. M. Kaltschmitt, W. Streicher, A. Wiese, Renewable energy: technology, economics and environment (Springer Science & Business Media, 2007) [Google Scholar]
  51. J. Li, X. Wang, X. Bill Yu, Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment, Appl. Energy 213 , 469–485 (2018) [CrossRef] [Google Scholar]
  52. S. Rehman, N.M. Al-Abbadi, Wind shear coefficients and their effect on energy production, Energy Convers. Manag. 46 , 2578–2591 (2005) [CrossRef] [Google Scholar]
  53. O.A. Jaramillo, M.A. Borja, Wind speed analysis in la ventosa, mexico: a bimodal probability distribution case, Renew. Energy 29 , 1613–1630 (2004) [CrossRef] [Google Scholar]
  54. R.N. Farrugia, The wind shear exponent in a mediterranean island climate, Renew. Energy 28 , 647–653 (2003) [CrossRef] [Google Scholar]
  55. D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien , R package version 1. 6–8 (2017) [Google Scholar]
  56. R.J. Stone, Improved statistical procedure for the evaluation of solar radiation estimation models, Solar Energy 51 , 289–291 (1993) [CrossRef] [Google Scholar]
  57. A.M. Fraser, H.L. Swinney, Using mutual information to find independent coordinates for strange attractors, Phys. Rev. A 33 , 1134–1140 (1986) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.