Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 7, 2022
Article Number 26
Number of page(s) 14
DOI https://doi.org/10.1051/rees/2022014
Published online 25 November 2022
  1. P.G.V. Sampaio, M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renew. Sustain. Energy Rev. 74, 590–601 (2017) [CrossRef] [Google Scholar]
  2. M.A.V. Rad, A. Toopshekan, P. Rahdan, A. Kasaeian, O. Mahian, A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations, Renew. Sustain. Energy Rev. 129, 1–20 (2020) [Google Scholar]
  3. E. Dupont, R. Koppelaar, H. Jeanmart, Global available solar energy under physical and energy return on, Appl. Energy 257, 1–17 (2020) [Google Scholar]
  4. International Energy Agency, Data and statistics − Energy consumption. Iea, 2020. https://www.iea.org/data-and-statistics?country=World&fuel=Co2%20emissions&indicator=Co2BySector. Oct. 2020 [Google Scholar]
  5. S. Racharla, K. Rajan, Solar tracking system − a review, Int. J. Sustain. Eng. 10, 72–81 (2017) [Google Scholar]
  6. S. Dey, M.K. Lakshmanan, B. Pesala, Tuning the solar power generation curve by optimal design of solar tree orientations, Adv. Energy Res. 1, 461–469 (2020) [CrossRef] [Google Scholar]
  7. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art, Nat. Rev. Mater. 269–285 (2019) [CrossRef] [Google Scholar]
  8. K. Li, S. Haque, A. Martins, E. Fortunato, R. Martins, M.J. Mendes, C.S. Schuster, Light trapping in solar cells: simple design rules to maximize absorption, Optica 7, 1377–1384 (2020) [CrossRef] [Google Scholar]
  9. H. Yu, R. Ma, Y. Xiao, J. Zhang, T. Liu, Z. Luo, Y. Chen, F. Bai, X. Lu, H. Yan, H. Lin, Improved organic solar cell efficiency based on regulation of alkyl chain on chlorinated non-fullerene acceptors, Mater. Chem. Front. 1–23 (2020) [Google Scholar]
  10. I. Alhamrouni, M.K. Rahmar, F.A. Ismail, M. Salem, A. Jusoh, T. Sutikno, Design and development of Sepic Dc-Dc boost converter for photovoltaic application, Int. J. Power Electr. Drive Syst. 10, 406–416 (2019) [Google Scholar]
  11. N. Patel, N. Gupta, B.C. Babu, Design, development, and implementation of grid-connected solar photovoltaic power conversion system, Energy Sourc. A 1–20 (2019) [Google Scholar]
  12. A. Awasthi, A.K. Shukla, M.S.R. Manohar, C. Dondariya, K.N. Shukla, D. Porwal, G. Richhariya, Review on sun tracking technology in solar Pv system, Energy Rep. 6, 392–405 (2020) [CrossRef] [Google Scholar]
  13. D.M. Patil, S.R. Madiwal, Design and development of solar tree for domestic applications, Int. J. Eng. Sci. Res. Technol. 102–111 (2016) [Google Scholar]
  14. F. Hyder, K. Sudhakar, R. Mamat, Solar Pv tree design: a review, Renew. Sustain. Energy Rev. 82, 1079–1096 (2018) [CrossRef] [Google Scholar]
  15. R. Deep, A. Mishra, A. Agarwal, Comparative analysis of solar panel output power: matrix vs tree form, MATEC Web Conf. 307 (2020) [Google Scholar]
  16. S. Dey, M.K. Lakshmanan, B. Pesala, Optimal solar tree design for increased flexibility in seasonal energy, Renew. Energy 125, 1038–1048 (2018) [CrossRef] [Google Scholar]
  17. P. Gangwar, N.M. Kumar, A.K. Singh, A. Jayakumar, M. Mathew, Solar photovoltaic tree and its end-of-life management using thermal and chemical treatments for material recovery, Case Stud. Thermal Eng. 14, 1–8 (2019) [Google Scholar]
  18. S. Dey, B. Pesala, Solar tree design framework for maximized power generation with minimized structural cost, Renew. Energy 1–30 (2020) [Google Scholar]
  19. K. Shanmukhi, J.R. Kumar, N. Prasad V.S.S.S., M.K. Naidu, S.S. Rao, Design and analysis on structure of a solar tree for 3 kW capacity, in Recent Advances in Material Sciences, edited by S.E.A. Pujari (Springer Nature. Cap., India, 2018), vol. 60, pp. 747–757 [Google Scholar]
  20. R. Singh, N. Rawat, R. Srivastava, Performance evaluation of a solar tree design and a fixed solar panel for effective solar power harnessing, Int. J. Appl. Eng. Res. 14, 2616–2621 (2019) [Google Scholar]
  21. P. Gangwar, R. Singh, R.P. Tripathi, A.K. Singh, Effective solar power harnessing using a few novel solar tree designs and their performance assessment, Energy Sourc. A 1–10 (2018) [Google Scholar]
  22. H.H. Rodrigues, R. Spagnolo, G.M. Silva, J.B. Junior, Automação de árvores solares (Solar tree automation), Braz. J. Dev. 5, 17628–17639 (2019) [CrossRef] [Google Scholar]
  23. X. Sun, R.V.K. Chavali, M.A. Alam, Real‐time monitoring and diagnosis of photovoltaic system degradation only using maximum power point—the Suns‐Vmp method, Progr. Photovoltaics 1–12 (2018) [Google Scholar]
  24. K. Kishore, B. Pesala, M. Santosh, S.C. Bose, S.A. Akbar, IoT platform to augment solar tree as smart highway street light with ambient monitoring capability, IEEE − 45670 10th International Conference on Computing, Communication and Networking Technologies (2019), pp. 1–6 [Google Scholar]
  25. S. Gupta, Quantum solar tree-design and production for domestic applications and future trends, Int. J. Appl. Res. 3, 439–444 (2017) [Google Scholar]
  26. E. Duque, A. Isaza, P. Ortiz, S. Chica, A. Lujan, Urban sets innovation: design of a solar tree Pv tree Pv system for charging mobile devices, in Medellín − Colombia. 6th International Conference on Renewable Energy Research and Applications (2017), 495–498 [Google Scholar]
  27. A.C.V. Pinto, Desenvolvimento de um protótipo de árvore fotovoltaica. Development of a photovoltaic tree prototype (Dissertation). In Portuguese, Universidade Federal de Viçosa, Viçosa (2018), p. 88 [Google Scholar]
  28. Mathsball, Fibonacci also plays football. (2020) http://mathsball.blogspot.com/2014/01/fibonacci-also-plays-football.html [Google Scholar]
  29. S. Khatoon, H. Khan, Comparative study of Fibonacci pattern and conventional pattern of solar cell, in 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (Cera) (2017), p. 158–163 [Google Scholar]
  30. S. Srisai, S. Harnsoongnoen, Efficiency of solar tree based on golden ratio, J. Phys.: Conf. Ser. 1380, 1–4 (2019) [Google Scholar]
  31. B. Karmakar, R. Mallipeddi, M.N.K. Protiq, Economical photovoltaic tree with improved angle of movement based sun tracking system, J. Autom. Mobile Robot. Intell. Syst. 13, 47–51 (2019) [Google Scholar]
  32. I. Oluwafemi, T. Laseinde, A.O. Salau, Design and construction of a 0.5 kW solar tree for powering farm settlements, Int. J. Mech. Eng. Technol. 10, 19–33 (2019) [Google Scholar]
  33. Syafriyudin, Characteristic solar tree construction on solar panel power plant. Atlantis Highlights in Engineering, International Conference on Science and Technology 1, 515–521 (2018) [Google Scholar]
  34. V. Renugadevi, An approach to solar power tree, Int. Conf. Electr. Instrum. Commun. Eng. 1–3 (2017) [Google Scholar]
  35. D. Majumdar, M.J. Pasqualetti, Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA, Lands. Urban Plan. 170, 150–168 (2018) [CrossRef] [Google Scholar]
  36. T. Sekiyama, A. Nagashima, Solar sharing for both food and clean energy production: performance of agrivoltaic systems for corn, a typical shade-intolerant crop, Environments 6, 1–12 (2019) [Google Scholar]
  37. H. Dinesh, J.M. Pearce, The potential of agrivoltaic systems, Renew. Sustain. Energy Rev. 54, 299–308 (2016) [CrossRef] [Google Scholar]
  38. R.V.P. Figueiredo, Potencial solar de parques de estacionamento para carregamento de veículos elétricos. Solar potential of parking lots for charging electric vehicles. (Dissertation). In Portuguese, Universidade de Lisboa. Portugal (2015), p. 99 [Google Scholar]
  39. N.M. Silvério, R.M. Barros, G.L. Tiago Filho, M. Redón-Santafé, I.F.S. Santos, V.E.M. Valério, Use of floating Pv plants for coordinated operation with hydropower plants: case study of the hydroelectric plants of the São Francisco River basin, Energy Convers. Manag. 171, 339–349 (2018) [CrossRef] [Google Scholar]
  40. A. Sahu, N. Yadav, K. Sudhakar, Floating photovoltaic power plant: a review, Renew. Sustain. Energy Rev. 66, 815–824 (2016) [CrossRef] [Google Scholar]
  41. H.A. Kazem, M.T. Chaichan, A.H. Alwaeli, K. Mani, Effect of shadows on the performance of solar photovoltaic, in Mediterranean Green Buildings & Renewable Energy, edited by A. Sayigh (Springer, Cham, 2017), pp. 379–385 [CrossRef] [Google Scholar]
  42. S.R. Pendem, S. Mikkili, Modeling, simulation and performance analysis of solar Pv array configurations (Series, Series-Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions, Energy Rep. 4, 274–287 (2018) [CrossRef] [Google Scholar]
  43. E.M.S. Brito, A.F. Cupertino, P.D. Reigosa, Y. Yang, V.F. Mendes, H.A. Pereira, Impact of meteorological variations on the lifetime of grid-connected Pv inverters, Microelectr. Reliab. 88–90, 1019–1024 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.