Issue |
Renew. Energy Environ. Sustain.
Volume 6, 2021
Achieving Zero Carbon Emission by 2030
|
|
---|---|---|
Article Number | 35 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/rees/2021035 | |
Published online | 04 October 2021 |
- Ö. Esen, M. Bayrak, Does more energy consumption support economic growth in net energy-importing countries? J. Econ. Finance Adm. Sci. 22, 75–98 (2017) [Google Scholar]
- V.M. Nik, A.T.D. Perera, D. Chen, Towards climate resilient urban energy systems: a review, Natl. Sci. Rev. nwaa134, doi: 10.1093/nsr/nwaa134 (2020) [Google Scholar]
- A. Gatto, F. Busato, Energy vulnerability around the world: the global energy vulnerability index (GEVI), J. Clean. Prod. 253, 118691 (2020) [CrossRef] [Google Scholar]
- R. Roggema, A. van den Dobbelsteen, Swarm planning for climate change: an alternative pathway for resilience, Build. Res. Inf. 40, 606–624 (2012) [CrossRef] [Google Scholar]
- R.A. Eagle et al., High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle, Proc. Natl. Acad. Sci. 110, 8813–8818 (2013) [CrossRef] [Google Scholar]
- UN. Sustainable, resilient and inclusive societies − the path towards transformation. in Together 2030 written inputs to the UN High-Level Political Forum on Sustainable Development(HLPF) (2018) [Google Scholar]
- K. Maki, K. Forssen, M. Raikkonen, Factors of vulnerability and resilience in energy systems. in CIRED Workshop 2016 101 (4 .)-101 (4 .) (Institution of Engineering and Technology). doi: 10.1049/cp.2016.0701. (2016) [Google Scholar]
- D. Petley, Global patterns of loss of life from landslides, Geology 40, 927–930 (2012) [CrossRef] [Google Scholar]
- A. Gatto, C. Drago, Measuring and modeling energy resilience, Ecol. Econ. 10 (2020) [Google Scholar]
- E. Gnansounou, Assessing the energy vulnerability: case of industrialised countries, Energy Policy 36, 3734–3744 (2008) [CrossRef] [Google Scholar]
- S. Carley, T.P. Evans, M. Graff, D.M. Konisky, A framework for evaluating geographic disparities in energy transition vulnerability, Nat. Energy 3, 621–627 (2018) [CrossRef] [Google Scholar]
- Global Assessment Report on Disaster Risk Mangement United Nations Human Settlements Programme, 2013 [Google Scholar]
- K. Sapountzaki, A. Baladinaki, Necessity of and benefits from a multi-risk urban observatory: the case of the Southernmost Town of EU, Ierapetra, Crete. in (2014) [Google Scholar]
- E.J. Plate, Flood risk and flood management, J. Hydrol. 267, 2–11 (2002) [CrossRef] [Google Scholar]
- https://public.emdat.be. https://public.emdat.be/data [Google Scholar]
- K. Terzaghi, Mechanism of Landslides, in Application of Geology to Engineering Practice, edited by S. Paige (Geological Society of America, 1950). doi: 10.1130/Berkey.1950.83 [Google Scholar]
- D.J. Varnes, Slope movement: Types and Processes. In Special Report 176: Landslides: Analysis and Control (1978) [Google Scholar]
- Volcanic eruptions − IFRC. https://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/definition-of-hazard/volcanic-eruptions/ [Google Scholar]
- Tsunamis − IFRC. https://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/definition-of-hazard/tsunamis/ [Google Scholar]
- N. Agrawal, Defining Natural Hazards − Large Scale Hazards. in Natural Disasters and Risk Management in Canada, Springer, Netherlands (2018), vol. 49, pp 1–40 [CrossRef] [Google Scholar]
- C.B. Mayhorn, A.C. McLaughlin, Warning the world of extreme events: a global perspective on risk communication for natural and technological disaster, Saf. Sci. 61, 43–50 (2014) [CrossRef] [Google Scholar]
- Nuclear Power in the European Union − World Nuclear Association. https://www.world-nuclear.org/information-library/country-profiles/others/european-union.aspx (2020) [Google Scholar]
- D.A. Novelo-Casanova, G. Suárez, Natural and man-made hazards in the Cayman Islands, Nat. Hazards 55, 441–466 (2010) [CrossRef] [Google Scholar]
- FEMA, Annual Report 1983 (1983) [Google Scholar]
- A. Tumanov, Risk assessment of accidents during the transportation of liquid radioactive waste in multimodal transport, IOP Conf. Ser. Earth Environ. Sci. 272, 032078 (2019) [CrossRef] [Google Scholar]
- Definitions of Hazard Assessment. American Chemical Society https://www.acs.org/content/acs/en/chemical-safety/hazard-assessment/tools/definitions.html [Google Scholar]
- J.P. Jenkins, Terrorism (2018) [Google Scholar]
- Biological Threat | disasterassistance.gov. https://www.disasterassistance.gov/information/disaster-types/biological-threat [Google Scholar]
- S. Meulenbelt, Assessing chemical, biological, radiological and nuclear threats to the food supply chain 15 (2018) [Google Scholar]
- J. Percebois, Energy vulnerability and its management, Int. J. Energy Sect. Manag. 1, 51–62 (2007) [CrossRef] [Google Scholar]
- R. Golecha, J. Gan, Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost, Renew. Sustain. Energy Rev. 57, 34–44 (2016) [CrossRef] [Google Scholar]
- C.V. Roupas, A. Flamos, J. Psarras, Measurement of EU27 oil vulnerability, Int. J. Energy Sect. Manag. 3, 203–218 (2009) [CrossRef] [Google Scholar]
- C. Roupas, A. Flamos, J. Psarras, Comparative analysis of EU member countries vulnerability in oil and gas, Energy Sources Part B 6, 348–356 (2011) [CrossRef] [Google Scholar]
- E. Gupta, Assessing the relative geopolitical risk of oil importing countries, in Chapter 13 (2007) [Google Scholar]
- P. Criqui, J. Percebois, Stratégies énergétiques: cigales et fourmis, Economies et Sociétés série EN 37–51 (1988) [Google Scholar]
- A.J. Paravantis, N. Kontoulis, Energy security and renewable energy: a geopolitical perspective, in Renewable Energy − Resources, Challenges and Applications, edited by M. Al Qubeissi, A. El-kharouf, H. Serhad Soyhan, (IntechOpen (2020). doi: 10.5772/intechopen.91848 [Google Scholar]
- Capgemini, Observatoire européen des marchés de l'énergie (2005) [Google Scholar]
- O.E. Williamson, Industrial Organization. (Elgar) (1990) [Google Scholar]
- B. Tenenbaum, R. Lock, J. Barker, Electricity privatization-Structural, competitive and regulatory options, Energy Policy 20, 1134–60 (1992) [CrossRef] [Google Scholar]
- D.M. Newbery, Privatization, Reconstructuring, and Regulation of Network Utilities, MIT Press (2000) [CrossRef] [Google Scholar]
- B. Sevi, Marches a terme et marches derives; les bourses europeennes d'electricite, Universite de Montpellier (CREDEN), (2005) [Google Scholar]
- W. Hogan, Electricity market restructuring: reforms of reforms, J. Regul. Econ. 103–131 (2002) [CrossRef] [Google Scholar]
- D. Helm, Energy, the State, and the Market: British Energy Policy since 1979 Oxford Press (2003) [Google Scholar]
- J. Percebois, Ouverture a la concurrence et regulation des industries de reseaux: la cas du gaz et de l'electricite, Econ. Publique 12, 71–98 (2003) [Google Scholar]
- A. Cherp et al., Energy and security, in Global Energy Assessment (GEA), edited by T.B. Johansson, N. Nakicenovic, A. Patwardhan, L. Gomez-Echeverri, Cambridge University Press (2012), pp. 325–384 [CrossRef] [Google Scholar]
- World Energy Transitions Outlook: 1.5°C Pathway, International Renewable Energy Agency (2021) [Google Scholar]
- P. Ravestein, G. van der Schrier, R. Haarsma, R. Scheele, M. van den Broek, Vulnerability of European intermittent renewable energy supply to climate change and climate variability, Renew. Sustain. Energy Rev. 97, 497–508 (2018) [CrossRef] [Google Scholar]
- I. Tobin et al., Climate change impacts on the power generation potential of a European mid-century wind farms scenario, Environ. Res. Lett. 11, 034013 (2016) [CrossRef] [Google Scholar]
- S. Jerez et al., The impact of climate change on photovoltaic power generation in Europe, Nat. Commun. 6, 10014 (2015) [CrossRef] [Google Scholar]
- R.J. Greatbatch, The North Atlantic Oscillation 30 (2000) [Google Scholar]
- J.W. Hurrell, Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation, Science 269, 676–679 (1995) [CrossRef] [PubMed] [Google Scholar]
- E. Anastasiou, K.O. Lorentz, G.J. Stein, P.D. Mitchell, Prehistoric schistosomiasis parasite found in the Middle East, Lancet Infect. Dis. 14, 553–554 (2014) [CrossRef] [Google Scholar]
- H.W. Cutforth, D. Judiesch, Long-term changes to incoming solar energy on the Canadian Prairie, Agric. For. Meteorol. 145, 167–175 (2007) [CrossRef] [Google Scholar]
- R. Schaeffer et al., Energy sector vulnerability to climate change: a review, Energy 38, 1–12 (2012) [CrossRef] [Google Scholar]
- A.J. Holmgren, Using graph models to analyze the vulnerability of electric power networks, Risk Anal. 26, 955–969 (2006) [CrossRef] [Google Scholar]
- G. Kowalski, S. Vilogorac, Energy security risks and risk mitigation: an overview 7 (2008) [Google Scholar]
- A.E. Farrell, H. Zerriffi, H. Dowlatabadi, Energy infrastructure and security, Annu. Rev. Environ. Resour. 29, 421–469 (2004) [CrossRef] [Google Scholar]
- A.F.P. de Lucena et al., The vulnerability of renewable energy to climate change in Brazil, Energy Policy 37, 879–889 (2009) [CrossRef] [Google Scholar]
- H.R. Heinimann, K. Hatfield, Infrastructure resilience assessment, management and governance–state and perspectives. In Resilience and risk. (Springer, 2017) [Google Scholar]
- G. Mutani, V. Todeschi, Energy resilience, vulnerability and risk in urban spaces, J. Sustain. Dev. Energy Water Environ. Syst. 6, 694–709 (2018) [CrossRef] [Google Scholar]
- P. Gasser et al., A review on resilience assessment of energy systems, Sustain. Resilient Infrastruct. 1–27 (2019), doi: 10.1080/23789689.2019.1610600 [Google Scholar]
- M. Ouyang, Review on modeling and simulation of interdependent critical infrastructure systems, Reliab. Eng. Syst. Saf. 121, 43–60 (2014) [Google Scholar]
- A. Sharifi, Y.A. Yamagata, Conceptual framework for assessment of urban energy resilience, Energy Proc. 75, 2904–2909 (2015) [CrossRef] [Google Scholar]
- M. Fleischhauer, The role of spatial planning in strengthening urban resilience, in Resilience of Cities to Terrorist and other Threats, edited by H.J. Pasman, I.A. Kirillov, Springer, Netherlands (2008), pp. 273–298 [CrossRef] [Google Scholar]
- M.E. Krasny, K.G. Tidball, Applying a resilience systems framework to urban environmental education, Environ. Educ. Res. 15, 465–482 (2009) [CrossRef] [Google Scholar]
- S. Tyler, M. Moench, A framework for urban climate resilience, Clim. Dev. 4, 311–326 (2012) [CrossRef] [Google Scholar]
- S.L. Cutter et al., A place-based model for understanding community resilience to natural disasters, Glob. Environ. Change 18, 598–606 (2008) [CrossRef] [Google Scholar]
- T.G. Frazier, C.M. Thompson, R.J. Dezzani, D. Butsick, Spatial and temporal quantification of resilience at the community scale, Appl. Geogr. 42, 95–107 (2013) [CrossRef] [Google Scholar]
- B. Frommer, Climate change and the resilient society: utopia or realistic option for German regions? Nat Hazards 17 (2013) [Google Scholar]
- S. Moslehi, T.A. Reddy, Sustainability of integrated energy systems: A performance-based resilience assessment methodology, Appl. Energy 228, 487–498 (2018) [CrossRef] [Google Scholar]
- G. Fu et al., Integrated approach to assess the resilience of future electricity infrastructure networks to climate hazards, IEEE Syst. J. 12, 3169–3180 (2018) [CrossRef] [Google Scholar]
- Y. Zhou, M. Panteli, R. Moreno, P. Mancarella, System-level assessment of reliability and resilience provision from microgrids, Appl. Energy 230, 374–392 (2018) [CrossRef] [Google Scholar]
- M. Panteli, P. Mancarella, Influence of Extreme Weather and Climate Change on the Resilience of Power Systems: Impact and Possible Mitigation Strategies 30 (2015) [Google Scholar]
- M. Keogh, C. Cody, Resilience in Regulated Utilities (2013) [Google Scholar]
- M. Chaudry et al., Building a Resilient UK Enegry System (2011) [Google Scholar]
- F. Gracceva, P. Zeniewski, A systemic approach to assessing energy security in a low-carbon EU energy system, Appl. Energy 123, 335–348 (2014) [Google Scholar]
- A. Kenward, U. Raja, Blackout: extreme weather, climate change and power outages 23 (2014) [Google Scholar]
- J. Jewell, A. Cherp, K. Riahi, Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices, Energy Policy 65, 743–760 (2014) [Google Scholar]
- D.M. Ward, The effect of weather on grid systems and the reliability of electricity supply, Clim. Change 121, 103–113 (2013) [Google Scholar]
- A.T.D. Perera, V.M. Nik, D. Chen, J.-L. Scartezzini, T. Hong, Quantifying the impacts of climate change and extreme climate events on energy systems, Nat. Energy 5, 150–159 (2020) [Google Scholar]
- G. Papaefthymiou, K. Dragoon, Towards 100% renewable energy systems: uncapping power system flexibility, Energy Policy 92, 69–82 (2016) [Google Scholar]
- B. Kroposki, Integrating high levels of variable renewable energy into electric power systems, J. Mod. Power Syst. Clean Energy 5, 831–837 (2017) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.