Open Access
Renew. Energy Environ. Sustain.
Volume 6, 2021
Article Number 4
Number of page(s) 20
Published online 05 March 2021
  1. IPCC, Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (Eds.), In Press (2018) [Google Scholar]
  2. D. Laslett, Can high levels of renewable energy be cost effective using battery storage? Cost of renewable energy scenarios for an isolated electric grid in Western Australia, Renew. Energy Environ. Sustain. 5 , 6 (2020) [Google Scholar]
  3. IEA, World Energy Outlook 2020, October 2020 [Google Scholar]
  4. Solar Power Europe, Global Market Outlook for Solar Power/2019-2023, 2019. [Google Scholar]
  5. J. Dujardin, A. Kahl, B. Kruyt, S. Bartlett, M. Lehning, Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland, Energy 135 , 513–525 (2017) [Google Scholar]
  6. F. Kienast, N. Huber, R. Hergert, J. Bolliger, L. Segura Moran, A.M. Hersperger, Conflicts between decentralized renewable electricity production and landscape services − a spatially-explicit quantitative assessment for Switzerland, Renew. Energy Environ. Sustain. 67 , 397–407 (2017) [Google Scholar]
  7. J. Michellod, Scénarios de décarbonisation complète du secteur énergétique en Suisse, Travail de diplôme HES-SO, Energie et techniques environnementales (2019) [Google Scholar]
  8. OFEN, Statistique globale suisse de l'énergie (2019) [Google Scholar]
  9. A. Sahu, N. Yadav, K. Sudhakar, Floating photovoltaic power plant: a review, Renew. Energy Environ. Sustain. 66 , 815–824 (2016) [Google Scholar]
  10. M. Rosa-Clot, G.M. Tina, Submerged and floating photovoltaic systems: modelling, design and case studies (Academic Press, 2017) [Google Scholar]
  11. R. Cazzaniga, M. Cicu, M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, C. Ventura, Floating photovoltaic plants: performance analysis and design solutions, Renew. Energy Environ. Sustain. 81 , 1730–1741 (2018) [Google Scholar]
  12. A. Dizier, Techno-economic analysis of floating PV solar power plants using active cooling technique: a case study for Taiwan (2018) [Google Scholar]
  13. P. Ranjbaran, H. Yousefi, G.B. Gharehpetian, F.R. Astaraei, A review on floating photovoltaic (FPV) power generation units, Renew. Energy Environ. Sustain. 110 , 332–347 (2019) [Google Scholar]
  14. D. Friel, M. Karimirad, T. Whittaker, J. Doran, E. Howlin, A review of floating photovoltaic design concepts and installed variations, 4th Int. In Conf. Offshore Renew. Energy CORE2019 Proc. Glasg . ASRANet Ltd UK Vol. 30 (2019) [Google Scholar]
  15. S. Oliveira-Pinto, J. Stokkermans, Assessment of the potential of different floating solar technologies–overview and analysis of different case studies, Energy Convers. Manag. 211 , 112747 (2020) [Google Scholar]
  16. R. Cazzaniga, M. Rosa-Clot, The booming of floating PV, Solar Energy (2020) [Google Scholar]
  17. S. Gorjian, H. Sharon, H. Ebadi, K. Kant, F.B. Scavo, G.M. Tina, Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems, J. Clean. Prod. 124285 (2020) [Google Scholar]
  18. M. Perez, R. Perez, C.R. Ferguson, J. Schlemmer, Deploying effectively dispatchable PV on reservoirs: comparing Floating PV to other renewable technologies, Solar Energy 174 , 837–847 (2018) [Google Scholar]
  19. REN21, Renewables 2020 Global Statu Report (2020), [Google Scholar]
  20. S. Casini, R. Cazzaniga, M. R. Clot, Floating PV plant and water chemistry, Res. Dev. Mater. Sci. (2018). DOI: 10.31031/RDMS.2018.07.000658 [Google Scholar]
  21. M.K. Hoffacker, M.F. Allen, R.R. Hernandez, Land-sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, United States, Environ. Sci. Technol. 51 , 14472–14482 (2017) [Google Scholar]
  22. G.D. Pimentel Da Silva, D.A.C. Branco, Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts, Impact Assess. Proj. Apprais. 36 , 390–400 (2018) [Google Scholar]
  23. M.P.C. Lopes, S. de Andrade Neto, D.A.C. Branco, M.A.V. de Freitas, N. da Silva Fidelis, Water-energy nexus: floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil, J. Clean. Prod. 273 , 122010 (2020) [Google Scholar]
  24. M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, M. Alkasrawi, Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook, Sci. Total Environ. (2020) [Google Scholar]
  25. A. El Hammoumi, A. Chalh, A. Allouhi, S. Motahhir, A. El Ghzizal, A. Derouich, Design and construction of a test bench to investigate the potential of floating PV systems. J. Clean. Prod. 278 , 123917 (2021) [Google Scholar]
  26. G.M. Tina, F.B. Scavo, L. Merlo, F. Bizzarri, Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants, Appl. Energy 281 , 116084 (2021) [Google Scholar]
  27. M.H. Alktranee, Q. Al-Yasiri, M.M. Sahib, Power output enhancement of grid-connected PV system using dual-axis tracking, Renew. Energy Environ. Sustain. 5 , 8 (2020) [Google Scholar]
  28. Swiss Research Foundation for Electricity and Mobile Communication, Technik − Stromversorgung, 2020. Available from: (accessed July 13, 2020) [Google Scholar]
  29. Isifloating, Isifloating is the most high quality and durable floating solar system, 2020. (accessed July 13, 2020) [Google Scholar]
  30. Ciel et Terre, Floating PV applications, 2020. (accessed July 13, 2020) [Google Scholar]
  31. Moss Maritime, A leader in maritime technology, 2018. (accessed July 9, 2020) [Google Scholar]
  32. Ocean Sun, Ocean Sun Products, 2020. (accessed July 9, 2020) [Google Scholar]
  33. World Bank Group, ESMAP and SERIS, Where sun meets water: floating solar market report (World Bank, Washington, DC, 2019a) [Google Scholar]
  34. M. Tagliapietra, Floating PV standardization as a driver for quality and trust, presented at the Floating Solar Conference (2020) [Google Scholar]
  35. O.A. Al-Musawi, A.A. Khadom, H.B. Manhood, M.S. Mahdi, Solar pond as a low grade energy source for water desalination and power generation: a short review. Renew. Energy Environ. Sustain. 5 , 4 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  36. R.S. Spencer, J. Macknick, A. Aznar, A. Warren, M.O. Reese, Floating photovoltaic systems: assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States, Environ. Sci. Technol. 53, 1680–1689 (2019) [Google Scholar]
  37. J. Farfan, C. Breyer, Combining floating solar photovoltaic power plants and hydropower reservoirs: a virtual battery of great global potential, Energy Procedia 155 , 403–411 (2018) [Google Scholar]
  38. R. Cazzaniga, M. Rosa-Clot, P. Rosa-Clot, G.M. Tina, Integration of PV floating with hydroelectric power plants, Heliyon 5 , e01918 (2019) [Google Scholar]
  39. L. Liu, Q. Sun, H. Li, H. Yin, X. Ren, R. Wennersten, Evaluating the benefits of integrating floating photovoltaic and pumped storage power system, Energy Convers. Manag. 194 , 173–185 (2019) [Google Scholar]
  40. N. Mousavi, G. Kothapalli, D. Habibi, C.K. Das, A. Baniasadi, Modelling, design, and experimental validation of a grid-connected farmhouse comprising a photovoltaic and a pumped hydro storage system, Energy Convers. Manag. 210 , 112675 (2020) [Google Scholar]
  41. H. Li, P. Liu, S. Guo, B. Ming, L. Cheng, Z. Yang, Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization, Appl. Energy 238 , 863–875 (2019) [Google Scholar]
  42. Y. Zhou, F.J. Chang, L.C. Chang, W.D. Lee, A. Huang, C.Y. Xu, S. Guo, An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies, Appl. Energy 275 , 115389 (2020) [Google Scholar]
  43. M. Ates, O.S. Yilmaz, F. Gulgen, Using remote sensing to calculate floating photovoltaic technical potential of a dam's surface, Sustain. Energy Technol. Assess. 41 , 100799 (2020) [Google Scholar]
  44. H. Rauf, M.S. Gull, N. Arshad, Complementing hydroelectric power with floating solar PV for daytime peak electricity demand, Renew. Energy 162 , 1227–1242 (2020) [Google Scholar]
  45. N. Lee, U. Grunwald, E. Rosenlieb, H. Mirletz, A. Aznar, R. Spencer, S. Cox, Hybrid floating solar photovoltaics-hydropower systems: benefits and global assessment of technical potential, Renew. Energy 162 , 1415–1427 (2020) [Google Scholar]
  46. J. Haas, J. Khalighi, A. de la Fuente, S.U. Gerbersdorf, W. Nowak, P.J. Chen, Floating photovoltaic plants: ecological impacts versus hydropower operation flexibility, Energy Convers. Manag. 206 , 112414 (2020) [Google Scholar]
  47. P.A. Château, R.F. Wunderlich, T.W. Wang, H.T. Lai, C.C. Chen, F.J. Chang, Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds, Sci. Total Environ. 687 , 654–666 (2019) [Google Scholar]
  48. J.Y. Choi, S.T. Hwang, S.H. Kim, Evaluation of a 3.5-MW floating photovoltaic power generation system on a thermal power plant ash pond, Sustainability 12 , 2298 (2020) [Google Scholar]
  49. J. Song, Y. Choi, Analysis of the potential for use of floating photovoltaic systems on mine pit lakes: case study at the ssangyong open-pit limestone mine in Korea, Energies 9 , 102 (2016) [Google Scholar]
  50. M.R. Santafe, P.S.F. Gisbert, F.J.S. Romero, J.B.T. Soler, J.J.F. Gozalvez, C.M.F. Gisbert, Implementation of a photovoltaic floating cover for irrigation reservoirs, J. Clean. Prod. 66 , 568–570 (2014) [Google Scholar]
  51. H. Nebey, B.Z. Taye, T.G. Workineh, GIS-based irrigation dams potential assessment of floating solar PV system, J. Energy (2020) [Google Scholar]
  52. M. Rosa-Clot, G.M. Tina, S. Nizetic, Floating photovoltaic plants and wastewater basins: an Australian project, Energy Procedia 134 , 664–674 (2017) [Google Scholar]
  53. E. Cagle, A. Armstrong, G. Exley, S.M. Grodsky, J. Macknick, J. Sherwin, R.R. Hernandez, The land sparing, water surface use efficiency, and water surface transformation of floating photovoltaic solar energy installations, Sustainability 12 , 8154 (2020) [Google Scholar]
  54. C. Gamarra, J.J. Ronk, Floating solar: an emerging opportunity at the energy-water nexus, Texas Water J. 10 , 32–45 (2019) [Google Scholar]
  55. D. Mathijssen, B. Hofs, E. Spierenburg-Sack, R. van Asperen, B. van der Wal, J. Vreeburg, H. Ketelaars, Potential impact of floating solar panels on water quality in reservoirs; pathogens and leaching, Water Pract. Technol. (2020) [Google Scholar]
  56. T. Hooper, A. Armstrong, B. Vlaswinkel, Environmental impacts and benefits of marine floating solar, Solar Energy (2020) [Google Scholar]
  57. S.Z. Golroodbari, W. van Sark, Simulation of performance differences between offshore and land‐based photovoltaic systems, Prog. Photovoltaics: Res. Appl. (2020) [Google Scholar]
  58. S.-M. Kim, M. Oh, H.-D. Park, Analysis and prioritization of the floating photovoltaic system potential for reservoirs in Korea, Appl. Sci. 9 , 395 (2019) [Google Scholar]
  59. IRENA, Renewable Power Generation Costs in 2019, International Renewable Energy Agency, Abu Dhabi (2020) [Google Scholar]
  60. B. Ortmann, The future of floating PV is already here; markets, merits, cost comparisons and lessons learned so far, presented at Floating Solar Conference , November 2020 [Google Scholar]
  61. M.T. Chaichan, H.A. Kazem, A.H. Al-Waeli, K. Sopian, The effect of dust components and contaminants on the performance of photovoltaic for the four regions in Iraq: a practical study, Renew. Energy Environ. Sustain. 5 , 3 (2020) [Google Scholar]
  62. SolarCleano, Robot solutions for solar panel cleaning, 2020. [Google Scholar]
  63. World Bank Group, ESMAP and SERIS, Where sun meets water: floating solar handbook for practitioners (World Bank, Washington, DC, 2019b) [Google Scholar]
  64. Bellini, EU to help anchor lower price for floating solar power, 2019. (accessed July 25, 2020) [Google Scholar]
  65. S. Enkhardt, Deutsche Braunkohle-Tagebauseen bieten wirtschaftliches Potenzial für knapp 3 Gigawatt schwimmende Photovoltaik-Anlagen, 2020. (accessed October 16, 2020) [Google Scholar]
  66. Wood Mackenzie, Floating Solar Landscape 2019 [Google Scholar]
  67. T. Reindl, C. Paton, Where sun meets water: global market status, project database and economics, presented at the Floating Solar Conference (November 2020) [Google Scholar]
  68. S. Merlet, Floating PV: global market and perspectives, 2018. [Google Scholar]
  69. A. Kahl, J. Dujardin, M. Lehning, The bright side of PV production in snow-covered mountains, PNAS 116 , 1162–1167 (2019) [Google Scholar]
  70. T. Nordmann, T. Vontobel, L. Clavadetscher, T. Boström, H.T. Remlo, Large Scale Hybrid PV Hydro Electricity Production in Floating Devices on Water, In 24th European Photovoltaic Solar Energy Conference, Hamburg (2009) [Google Scholar]
  71. T. Nordmann, Photovoltaics and the Lacustrine Landscape Large Scale Photovoltaik Hydro Electric on Water, PVSEC Amsterdam (2014) [Google Scholar]
  72. Romande Energie, Press release on the Lac de Toules plant, 2019. [Google Scholar]
  73. M. Zubair, A. Bilal Awan, S. Ghuffar, A.D. Butt, M. Farhan, Analysis and selection criteria of lakes and dams of Pakistan for floating photovoltaic capabilities, J. Solar Energy Eng. 142 (2020) [Google Scholar]
  74. A.S. Darwish, R. Al-Dabbagh, Wind energy state of the art: present and future technology advancements, Renew. Energy Environ. Sustain. 5 , 7 (2020) [Google Scholar]
  75. N.R. Brun, B. Wehrli, K. Fent, Ecotoxicological assessment of solar cell leachates: copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells, Sci. Total Environ. 543 , 703–714 (2016) [Google Scholar]
  76. U. Hahnel, G. Chatelain, B. Conte, V. Piana, T. Brosch, Mental accounting of energy behavior, Nat. Energy (2020) [Google Scholar]
  77. O.J. Mdee, T.K. Nielsen, C.Z. Kimambo, J. Kihedu, Assessment of hydropower resources in Tanzania. A review article, Renew. Energy Environ. Sustain. 3 , 3 (2018) [Google Scholar]
  78. M. Barry, R. Betz, S. Fuchs, L. Gaudard, T. Geissmann, G. Giuliani, W. Hediger, M. Herter, M. Kosch, F. Romerio, M. Schillinger, L. Schlange, C. Schule, R. Schumann, G. Voegeli, H. Weigt, The Future of Swiss Hydropower Realities, Options and Open Questions (2019). [Google Scholar]
  79. C. Malamatenios, Renewable energy sources: jobs created, skills required (and identified gaps), education and training, Renew. Energy Environ. Sustain. 1 , 23 (2016) [Google Scholar]
  80. J.M. Utterback, Mastering the dynamics of innovation (Harvard Business School Press, Cambridge, MA, (1994) [Google Scholar]
  81. V. Piana, Innovative economic policies for climate change mitigation (EWI, 2009) [Google Scholar]
  82. V. Piana, Implementing Paris: which more ambitious Nationally Determined Contributions can promote innovation in the transport system with sufficient urgency to contribute to 1.5°C-consistent global greenhouse gas emission pathways , University of Oxford Conference “1.5 Degrees: Meeting the challenges of the Paris Agreement” (2016) [Google Scholar]
  83. V. Piana, Towards 1.5°C-consistent next Paris NDCs: a comparison between Italian and Swiss transport decarbonization perspectives (SISC, 2018) [Google Scholar]
  84. W. Brücher, Geography of energy, in: N.J. Smelser, P.B. Baltes (Eds.), International encyclopedia of the social & behavioral science , Gale-Cengage, Detroit, MI 2001, pp. 4520–4523 [Google Scholar]
  85. M. Pasqualetti, Reading the changing energy landscape, in: S. Stremke, A. Van Den Dobbelsteen (Eds.), Sustainable energy landscapes: designing, planning, and development , CRC Press, Boca Raton, FL 2012, pp. 11–44 [Google Scholar]
  86. E. Michalena, Y. Tripanagnostopoulos, Contribution of the solar energy in the sustainable tourism development of the Mediterranean islands, Renew. Energy 35 , 667–673 (2010) [Google Scholar]
  87. J.F. Rodriguez, Hydropower landscapes and tourism development in the Pyrenees. From natural resource to cultural heritage, Journal of Alpine Research Revue de geography alpine 100 , 2–15 (2012) [Google Scholar]
  88. I. Msengi, R. Doe, T. Wilson, D. Fowler, C. Wigginton, S. Olorunyomi, I. Banks, R. Morel, Assessment of knowledge and awareness of “sustainability” initiatives among college students, Renew. Energy Environ. Sustain. 4 , 6 (2019) [Google Scholar]
  89. O. Philippart, Lessons learnt from a pioneer in the market, Ciel & Terre International, presented at the Floating Solar Conference (November, 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.