Open Access
Renew. Energy Environ. Sustain.
Volume 5, 2020
Article Number 4
Number of page(s) 13
Published online 07 February 2020
  1. S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust. Sci. 31 , 242–281 (2005) [CrossRef] [Google Scholar]
  2. M. Mehanna, T. Saito, J. Yan, M. Hickner, X. Cao, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salinity prior to reverse osmosis, Energy Environ. Sci. 3 , 1114–1120 (2010) [CrossRef] [Google Scholar]
  3. A. Bajpayee, T. Luo, A. Muto, G. Chen, Very low temperature membrane-free desalination by directional solvent extraction. Energy Environ. Sci. 4 , 1672–1675 (2011) [CrossRef] [Google Scholar]
  4. A.R. Hoffman, Water security: a growing crisis and the link to energy, AIP Conf. Proc. 1044 , 55–63 (2008) [CrossRef] [Google Scholar]
  5. H. Lu, J.C. Walton, A.H. Swift, Desalination coupled with salinity-gradient solar ponds, Desalination 136 , 13–23 (2001) [CrossRef] [Google Scholar]
  6. P. Wassouf, T. Peska, R. Singh, A. Akbarzadeh, Novel and low cost designs of portable solar stills, Desalination 276 , 294–302 (2011) [CrossRef] [Google Scholar]
  7. A. Tamimi, K. Rawajfeh, Lumped modeling of solar-evaporative ponds charged from the water of the Dead Sea, Desalination 216 , 356–366 (2007) [CrossRef] [Google Scholar]
  8. M.C. Giestas, H.L. Pina, J.P. Milhazes, C. Tavares, Solar pond modeling with density and viscosity dependent on temperature and salinity, Int. J. Heat Mass Transf. 52 , 2849–2857 (2009) [CrossRef] [Google Scholar]
  9. M. Karakilcik, K. Kiymac, I. Dincer, Experimental and theoretical temperature distributions in a solar pond, Int. J. Heat Mass Transf. 49 , 825–835 (2006b) [CrossRef] [Google Scholar]
  10. F. Farahbod, A. Zamanpour, M.H.Z.S. Fard, Russian Federation European Journal of Technology and Design, Euro. J. Technol. Des. 6 , 4 (2014) [Google Scholar]
  11. Z. Abdel-Rehima, A. Lasheen, Experimental and theoretical study of a solar desalination system located in Cairo, Egypt Desalination 217 , 52–64 (2007) [CrossRef] [Google Scholar]
  12. R. Alnaizy, A.A. Aidan, Development of a renewable energy-based solution for saline waters desalinations. AlChE, Annual Meeting Conference Proceedings (2010) [Google Scholar]
  13. J. Leblanc, A. Akbarzadeh, J. Andrews, H. Lu, P. Golding, Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency, Sol. Energy. 85 , 3103–3142 (2011) [CrossRef] [Google Scholar]
  14. K. Sampathkumar, T.V. Arjunan, P. Senthilkumar, Water desalination by solar energy. In Wastewater Reuse and Management (Springer Netherlands, Berlin, 2013), pp. 323–351 [CrossRef] [Google Scholar]
  15. R. Dev, G.N. Tiwari, Solar distillation, In Drinking Water Treatment (Springer Netherlands, Berlin, 2011), pp. 159–210 [CrossRef] [Google Scholar]
  16. S. Chaudhry, Unit cost of desalination. California Desalination Task Force, California Energy Commission (Sacramento, California, 2003) [Google Scholar]
  17. T. Younos, Environmental issues of desalination, J. Contemp. Water Res. Educ. 132 , 11–18 (2005) [CrossRef] [Google Scholar]
  18. H. Cooley, P.H. Gleick, G.H. Wolff, Desalination, with a grain of salt: a California perspective. Oakland, California: Pacific Institute for Studies in Development, Environment, and Security (2006) [Google Scholar]
  19. I.S. Al-Mutaz, Environmental impact of seawater desalination plants, Environ. Monit. Assess. 16 , 75–84 (1991) [CrossRef] [Google Scholar]
  20. S. Tundeea, N. Srihajonga, S. Charmongkolpradita, Electric-power generation from solar pond using combination of thermosyphon and thermoelectric modules, Energy Procedia 48 , 453–463 (2014) [CrossRef] [Google Scholar]
  21. A. Akbarzadeh, J. Andrews, P. Golding, Solar ponds. Solar Energy Conversion and Photoenergy Systems in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford, UK (2008) [Google Scholar]
  22. H. Tabor, B. Doron, Solar Ponds-Lessons learned from the 150 kW (e) power plant at Ein Boqek. Proc. of the ASME Solar Energy Div., Anaheim, California (1986) [Google Scholar]
  23. B. Ha, Ormat Turbines, Arava Solar Pond Inaugurated, Sun world 8 , 18 (1984) [Google Scholar]
  24. J. Andrew, A. Akbarzadeh, Enhancing the thermal efficiency of solar pond by extracting heat from the gradient layer. Sol. Energy 78 , 704–716 (2005) [CrossRef] [Google Scholar]
  25. A. Kalecsinsky, W. Ungarische, Heisse Klzeen, Ann. D. Physik 7 , 408–416 (1902) [CrossRef] [Google Scholar]
  26. A.A. El-Sebaii, M.R.I. Ramadan, S. Aboul-Enein, A.M. Khallaf, History of the solar ponds: a review study, Renew. Sustain. Energy Rev. 15 , 3319–3325 (2011) [CrossRef] [Google Scholar]
  27. C.G. Anderson, Limnology of a shallow saline meromitic lake, Limnology Oceanog. 3 , 259–269 (1958) [CrossRef] [Google Scholar]
  28. A.T. Wilson, H.W. Wellmann, Lake Vanda, an Antarctic Lake. Nature 196 , 1171–1173 (1962) [CrossRef] [Google Scholar]
  29. R. Gruber, Science and the New Nations (Basic Books, New York, 1961), pp. 108–110 [Google Scholar]
  30. J.M. Melack, P. Kilham, Lake Mehage., a mesotropic sulfactochloride Lake in western Uganda, Afr. J. Trop. Hydrobiol. Fish 2 , 141 (1972) [Google Scholar]
  31. Y. Cohen, W. Krumbein, M. Whilo, Solar Lake (Sinie), Limnol. Oceanogr. 22 , 609–34 (1977) [CrossRef] [Google Scholar]
  32. H. Tabor, Large-area solar collectors (solar ponds) for power production, U.N. Conf. New Sources of Energy, Rome, l961, reprinted in Sol. Energy 4 , 189–194 (1963) [Google Scholar]
  33. A.Z.A. Saifullah, A.S. Iqubal, A. Saha, Y. Mesda, B. Isik, A.U. Okoro, V.O. Ndubueze, Solar pond and its application to desalination, Asian Trans. Sci. Technol. 2 , 3 (2012) [Google Scholar]
  34. R.P. Fynn, T.H. Short, Salt Gradient Solar Ponds: Research Progress in Ohio and Future Prospects. In 6th International Symposium on Salt, Toronto (1983) [Google Scholar]
  35. H.P. Garg, Solar ponds. In Advances in Solar Energy Technology (Springer, Netherlands, 1987), pp. 259–359 [CrossRef] [Google Scholar]
  36. H. Tabor, Solar collector developments, Sol. Energy 3 , 8–9 (1959) [CrossRef] [Google Scholar]
  37. H. Tabor, Solar ponds. Electron Power 296–9 (1964) [CrossRef] [Google Scholar]
  38. H. Tabor, R. Matz, Solar pond: status report. Sol. Energy 9 , 177–182 (1965) [CrossRef] [Google Scholar]
  39. H. Weinberger, The physics of the solar pond. Sol. Energy 8 , 45–56 (1964) [CrossRef] [Google Scholar]
  40. C. Elata, O. Levin, Hydraulics of the solar pond. In: Cong. Int. Assoc. Hydraulic RCS (1965) [Google Scholar]
  41. J. Hirschmann, Supperession of natural convection in open 1117 ponds by a concentration gradient, in: U.N. Conference New 1118 Sources of Energy, 1961, p. 487 (1961) [Google Scholar]
  42. K.D. Stolzenbach, J.M.K. Dake, D.R.F. Harleman, Prediction of temperature in solar ponds, in: Annual Meeting, Solar 1121 Society (1986) [Google Scholar]
  43. Y.U. Usmanov, V. Elisev, G. Umarov, On the optical characteristics of solar pond, Appl. Sol. Energy 7 , 8–81 (1971) [Google Scholar]
  44. A. Osdor, Method of trapping and utilizing solar heat, U.S. Patent No. 4.462. 389 (1984) [Google Scholar]
  45. L.H. Shaffer, Viscosity stabilized solar pond, in: Proceedings of the International 1127 Solar Energy Society Congress, 1978, pp. 1171–1175 [Google Scholar]
  46. N.D. Kaushika, Solar Ponds, Adv. Energy Syst. Technol. 5 , 75 (2013) [Google Scholar]
  47. M. Taga, T. Matsumoto, T. Ochi, Studies on membrane viscosity stabilized solar pond, Sol. Energy 45 , 315–24 (1990) [CrossRef] [Google Scholar]
  48. Y. Keren, H. Rubin, J. Atkinson, M. Priven, G.A. Bemporad, Theoretical and experimental comparison of conventional and advanced solar pond performance, Sol. Energy 51 , 255–270 (1993) [CrossRef] [Google Scholar]
  49. J.R. Hill, Membrane stratified solar ponds. Solar Energy 25 , 317–325 (1980) [CrossRef] [Google Scholar]
  50. W.C. Dickinson, A.F. Clark, A. Jantnono, The ERDA-Sohio Project. Lawrence Livermore Laboratory, Univ. of California, Report UCRL-78288 (1976) [Google Scholar]
  51. H.P. Garg, P. Bandyopadhyay, U. Rani, D.S. Hrishikesan, Shallow solar pond. State Of-The-Art, Energy Convers. Mgmt. 22 , 117–131 (1982) [CrossRef] [Google Scholar]
  52. M.S. Sodha, N.K. Bansal, D.S. Hrishikesan, P.K. Bansal, A study of plastic shallow solar pond water heater for domestic applications, Sol. Energy 34 , 505–512 (1985) [CrossRef] [Google Scholar]
  53. A.I. Kudish, D. Wolf, A compact shallow solar pond hot water heater, Sol. Energy 21 , 317–322 (1978) [CrossRef] [Google Scholar]
  54. M. Taga, K. Fujimoto, T. Ochi, Field testing on non − salt solar ponds, Sol. Energy 56 , 267–277 (1996) [CrossRef] [Google Scholar]
  55. S. Tundee, P. Terdtoon, P. Sakulchangsatjatai, R. Singh, A. Akbarzadeh, Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers, Sol. Energy 84 , 1706–1716 (2010) [CrossRef] [Google Scholar]
  56. A. Aizaz, R. Yousaf, Construction and Analysis of a Salt Gradient Solar Pond for Hot Water Supply. Euro. Sci. J. 9 , 36 (2013) [Google Scholar]
  57. K. Al-Jamal, S. Khashan, Effect of energy extraction on solar pond performance, Energy Convers. Manag. 39 , 559–566 (1998) [Google Scholar]
  58. I.A. Burston, Application of a salinity-gradient solar pond in a salt affected area of Victoria, M. Eng. Thesis, Department of Mechanical Engineering, RMIT University, Melbourne, 1996 [Google Scholar]
  59. A. Chinn, A. Akbarzadeh, J. Andrews, N. Malik, T. Fonseca, Solar Pond Technology and its Role in Salinity Mitigation. ISES Solar World Congress 839–844 (2001) [Google Scholar]
  60. P. Johnson, A. Akbarzadeh, F. Theurer, T. Nguyen, M. Mochizuki, Heat Pipe Turbine Becoming a Reality, Heat Pipe Technology: Theory, Applications and Prospects, Proceedings of the 5th International Symposium, Melbourne, Australia, 17-20 November 1996, Pergamon, Oxford (1997) [Google Scholar]
  61. A. Akbarzadeh, G. Earl, P. Golding, Solar ponds and salinity control in Victoria, Proceedings, Australian and New Zealand Solar Energy Society, Solar 1992 Conference, Darwin, 1992 [Google Scholar]
  62. A. Akbarzadeh, J. Andrews, I.A. Burston, I. Oanca, U-Y. Wong, A. Ngoh, S. Wong, Solar Ponds at RMIT: Renewable energy plus salinity mitigation (2015) [Google Scholar]
  63. O.A. Al‑Musawi, A.A. Khadom, B. Fakhru'l‑Razi, D.R. Ahmadun, R. Biak, Water distillation in a combined solar still and solar pond system: Iraq as a case study, Euro-Mediterranean J. Environ. Integ. 3 , 20 (2018) [CrossRef] [Google Scholar]
  64. A. Rabl, C.E. Nielsen, Solar ponds for space heating, Sol. Energy 17 , 1–12 (1975) [CrossRef] [Google Scholar]
  65. J.R. Mohammad, Thermal behavior of a small salinity gradient solar pond with wall shading effect, Sol. Energy 77 , 281–290 (2004) [CrossRef] [Google Scholar]
  66. N.C. Coops, R.H. Waring, J.B. Moncrieff, Estimating mean monthly incident solar radiation on horizontal and inclined slopes from mean monthly temperature extremes. Int. J. Biometeorol. 44 , 204–211 (2000) [CrossRef] [Google Scholar]
  67. S. Kanan, J. Dewsbury, G. Lane-Serff, A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds, J. Mech. Ind. Sci. Eng. 8 , 27–33 (2014) [Google Scholar]
  68. G. Calingaert, D.S. Davis, Ind. Eng. Chem. 17 , 1287 (1925) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.