Renew. Energy Environ. Sustain.
Volume 2, 2017
Sustainable energy systems for the future
Article Number 20
Number of page(s) 5
Published online 01 September 2017
  1. R. Fukahori, T. Nomura, C. Zhu, N. Sheng, N. Okinaka, T. Akiyama, Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage, Appl. Energy 170, 324 (2016) [CrossRef]
  2. Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy 104, 538 (2013) [CrossRef]
  3. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Convers. Manag. 45, 1597 (2004) [CrossRef]
  4. S.M. Hasnan, Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques, Energy Convers. Manag. 39, 1127 (1998) [CrossRef]
  5. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev. 13, 318 (2009) [CrossRef]
  6. M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renew. Sustain. Energy Rev. 11, 1913 (2007) [CrossRef]
  7. H. Ge, H. Li, S. Mei, J. Liu, Low melting point metal as a new class of phase change material: an emerging frontier in energy area, Renew. Sustain. Energy Rev. 21, 331 (2013) [CrossRef]
  8. T. Akiyama, Y. Ashizawa, J. Yagi, Storage and release of heat in a single spherical capsule containing phase change material of high melting point, Trans. Jpn Soc. Mech. Eng. 57, 284 (1991) [CrossRef]
  9. R. Fukahori, T. Nomura, C. Zhu, N. Sheng, G. Saito, T. Akiyama, Thermal analysis of Al–Si alloys as high-temperature phase change materials and their corrosion properties with ceramic materials, Appl. Energy 163, 1 (2016) [CrossRef]
  10. E. Risueño, A. Faik, J. Rodriguez-Aseguinolaza, P. Blanco-Rodriguez, A. Gil, M. Tello, B. D’Aguanno, Mg–Zn–Al eutectic alloys as phase change material for latent heat thermal energy storage, Energy Proc. 69, 1006 (2015) [CrossRef]
  11. P. Blanco-Rodriguez, J. Rodriguez-Aseguinolaza, E. Risueño, M. Tello, Thermophysical characterization of Mg–51%Zn eutectic metal alloy: a phase change material for thermal energy storage in direct steam generation applications, Energy 72, 414 (2014) [CrossRef]
  12. P. Blanco-Rodriguez, J. Rodriguez-Aseguinolaza, A. Gil, E. Risueño, B. D’Aguanno, I. Loroño, L. Martin, Experiments on a lab scale TES unit using eutectic metal alloy as PCM, Energy Proc. 69, 769 (2015) [CrossRef]
  13. R. Adinberg, D. Zvegilsky, M. Epstein, Heat transfer efficient thermal energy storage for steam generation, Energy Convers. Manag. 51, 9 (2010) [CrossRef]
  14. J.P. Kotzé, T.W. von Backström, P.J. Erens, High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids, ASME J. Solar Energy Eng. 135, 1 (2013)
  15. J. Nieto-Maestre, I. Iparraguirre-Torres, Z.A. Velasco, I. Kaltzakorta, M.M. Zubieta, Novel metallic alloys as phase change materials for heat storage in direct steam generation applications, in Proceedings of the 21st SolarPACES International Conference (SolarPACES 2015), Capetown (2015)
  16. T. Nomura, C. Zhu, N. Sheng, G. Saito, T. Akiyama, Microencapsulation of metal-based phase change material for high-temperature thermal energy storage, Scient. Rep. 5, 9117 (2015) [CrossRef]
  17. B. Myers, A. Chauhuri, J. Burns, Thermally-capacitive phase change encapsulant for electronic devices, Google Patents, US20030157342,, 21 August 2003

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.