Issue
Renew. Energy Environ. Sustain.
Volume 2, 2017
Sustainable energy systems for the future
Article Number 21
Number of page(s) 9
DOI https://doi.org/10.1051/rees/2017027
Published online 31 August 2017
  1. ISWA, Globalization and waste management, International Solid Waste Association, Austria, July 2012 [Google Scholar]
  2. SUEZ, SUEZ Australia & New Zealand corporate video, 10 January 2017 [Google Scholar]
  3. R. RenoSam, The most efficient waste management system in Europe, Waste-to-energy in Denmark, Technical report, 2006 [Google Scholar]
  4. TAQA, Waste-to-energy, TAQAWORLD, 2013 [Google Scholar]
  5. S. Ojoawo, O. Agbede, A. Sangodoyin, On the physical composition of solid wastes in selected dumpsites of Ogbomosoland, South-Western Nigeria, J. Water Resour. Prot. 3, 661 (2011) [CrossRef] [Google Scholar]
  6. P.C. Osuocha, Integrated development for water supply and sanitation: improving refuse management in urban Nigeria, in Presented at the Water, Engineering and Development Centre, Ethiopia (1999) [Google Scholar]
  7. S. Sandu, L. Jaques, M. Bradshaw, L. Carson, A. Budd, M. Huleatt et al., Australian Energy Resource Assessment, 2010 [Google Scholar]
  8. J. Gustavsson, C. Cederberg, U. Sonesson, R. Van Otterdijk, A. Meybeck, Global food losses and food waste, Food and Agriculture Organization of the United Nations, Rome, 2011 [Google Scholar]
  9. A. Butu, S. Mshelia, Municipal solid waste disposal and environmental issues in Kano metropolis, Nigeria, Br. J. Environ. Sci. 2, 1–16 (2014) [Google Scholar]
  10. G. McCarthy, Standards of Performance for Municipal Solid Waste Landfills, in USEPA (2015), Vol. 80 [Google Scholar]
  11. N.P. Commission, National population census (National Population Commission, Abuja, Nigeria, 2006) [Google Scholar]
  12. EuropeAid, Feasibility study of the waste to energy (WtE) project of the Ogun State Government, European Union, Abuja, 2013 [Google Scholar]
  13. N.B. Statistics, Annual Abstract of Statistic, in N. B. o. Statistics (NBS, Nigeria, 2009) [Google Scholar]
  14. G. Tchobanoglous, H. Theisen, S. Vigil, Integrated Solid Waste Management: Engineering Principles and Management Issues (McGraw-Hill Science/Engineering/Math, New York, NY, 1993) [Google Scholar]
  15. L.F. Diaz, G.M. Savage, L.L. Eggerth, Solid Waste Management (UNEP/Earthprint, London, 2005), Vol. 1 [Google Scholar]
  16. S. Borglin, J. Shore, H. Worden, R. Jain, An overview of the sustainability of solid waste management at military installations, Int. J. Environ. Technol. Manag. 13, 51–83 (2010) [CrossRef] [Google Scholar]
  17. N. Abila, Managing municipal wastes for energy generation in Nigeria, Renew. Sustain. Energy Rev. 37, 182–190, 9 (2014) [CrossRef] [Google Scholar]
  18. S.O. Oyedepo, Towards achieving energy for sustainable development in Nigeria, Renew. Sustain. Energy Rev. 34, 255–272, 6 (2014) [CrossRef] [Google Scholar]
  19. R.P.L. Biogass, Anaerobic Digestion in Australia − Biogass Renewables, 26 December 2016 [Google Scholar]
  20. M. Medina, Waste picker cooperatives in developing countries, in Membership-Based Organizations of the Poor, edited by M. Chen et al. (Routledge, London, 2007), pp. 105–121 [CrossRef] [Google Scholar]
  21. W. Bank (ed.), Municipal solid waste incineration: World Bank technical guidance report, The World Bank, Washington, DC, 1999 [Google Scholar]
  22. Y. Li, W. Teng, W. Wang, T. Yang, R. Li, Waste-to-energy in China: status and prospects, 2015 [Google Scholar]
  23. A.J. McMichael, The urban environment and health in a world of increasing globalization: issues for developing countries, Bull. World Health Organ. 78, 1117–1126 (2000) [Google Scholar]
  24. T. Ogwueleka, Municipal solid waste characteristics and management in Nigeria, J. Environ. Health Sci. Eng. 6, 173–180 (2009) [Google Scholar]
  25. T. Abur, E.E. Oguche, B. Gideon Ayuba Duvuna, Characterization of municipal solid waste in the Federal Capital, Abuja, Nigeria, Glob. J. Sci. Front. Res. 14, 1–6 (2014) [Google Scholar]
  26. A.D. Olabode, A. Lawrence, Environmental impact of indiscriminate waste disposal on river channel in part of Akoko-region, Ondo state, Nigeria, Int. J. Innov. Scient. Res. 5, 162–168 (2014) [Google Scholar]
  27. Y.S. Mohammed, M.W. Mustafa, N. Bashir, M.A. Ogundola, U. Umar, Sustainable potential of bioenergy resources for distributed power generation development in Nigeria, Renew. Sustain. Energy Rev. 34, 361–370, 6 (2014) [CrossRef] [Google Scholar]
  28. L. Rodic, A. Scheinberg, D.C. Wilson, Comparing solid waste management in the world’s cities, in ISWA World Congress (2010) [Google Scholar]
  29. S. Wood, M. Fanning, M. Venn, K. Whiting, Review of state-of-the-art waste-to-energy technologies, Stage Two, Case Studies, London, UK, 2013, pp. 9–30 [Google Scholar]
  30. K.G. Wilkinson, A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia, Biomass Bioenergy 35, 1613–1622 (2011) [CrossRef] [Google Scholar]
  31. A. Schnürer, Å. Jarvis, Microbiological Handbook for Biogas Plants: RAPPORT U2009:03, 2009 (10 November 2016) [Google Scholar]
  32. M. Pöschl, S. Ward, P. Owende, Evaluation of energy efficiency of various biogas production and utilization pathways, Appl. Energy 87, 3305–3321, 11 (2010) [CrossRef] [Google Scholar]
  33. L.A. Pellegrini, G. De Guido, S. Consonni, G. Bortoluzzi, M. Gatti, From biogas to biomethane: how the biogas source influences the purification costs, Chem. Eng. Trans. 43, 409–414 (2015) [Google Scholar]
  34. G.V. Rupf, P.A. Bahri, K. de Boer, M.P. McHenry, Broadening the potential of biogas in Sub-Saharan Africa: an assessment of feasible technologies and feedstocks, Renew. Sustain. Energy Rev. 61, 556–571 (2016) [CrossRef] [Google Scholar]
  35. T. Michaels, The 2014 ERC Directory of waste-to-energy facilities, Energy Recovery Council, 2014 [Google Scholar]
  36. J. Salvatore, World energy perspective: cost of energy technologies, Bloomberg New Energy Finance, 2013 [Google Scholar]
  37. B. McCabe, Country report, Australia, IEA Bioenergy, 2015 [Google Scholar]
  38. M. Ritchie, Report: state of waste 2016 – current and future Australian trends, 2016 (19 December 2016) [Google Scholar]
  39. B. Messenger, Cogeneration plant exports 500 kW energy from waste to grid, 2016 (19 December 2016) [Google Scholar]
  40. M. Dumont, Country report NL, Netherlands Enterprise Agency, Berlin, Germany, 2015 [Google Scholar]
  41. T.M. McCarthy, M. Van Berlo, A symbiotic solution (Waste Management World, 2007) [Google Scholar]
  42. A. Abutu, No sewage treatment plant in Nigeria, in Daily Trust, Nigeria (2014) [Google Scholar]
  43. U. Nations, Sustainable development goals − United Nations, 2015 (5 July 2016) [Google Scholar]
  44. A.S. Sambo, Strategic developments in renewable energy in Nigeria (International Association for Energy Economics, 2009), Vol. 16, pp. 15–19 [Google Scholar]
  45. B. Crew, China is building the largest waste-to-energy plant in the world, Science Alert, 2016 [Google Scholar]
  46. N.J. Themelis, C. Mussche, Municipal solid waste management and waste-to-energy in the United States, China and Japan, in Second International Academic Symposium on Enhanced Landfill Mining, Houthalen-Helchteren (2013) [Google Scholar]
  47. N. Themelis, Z. Zhang, WTE in China (Waste Management World, 2010) (19 December 2016) [Google Scholar]
  48. U. Nations, Atlas of the World, 18 December 2014 [Google Scholar]
  49. M. Awopetu, A. Coker, R. Awopetu, S. Awopetu, A. Ajonye, O. Awopetu, Residents’ knowledge of waste reduction, reusing and recycling in Makurdi metropolis, Nigeria, WIT Trans. Ecol. Environ. 163, 51–59 (2012) [CrossRef] [Google Scholar]
  50. A.U. Zaman, S. Lehmann, The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city’, J. Clean. Prod. 50, 123–132 (2013) [CrossRef] [Google Scholar]
  51. S. Eberlein, Where No City Has Gone Before: San Francisco Will Be World’s First Zero-Waste Town by 2020, 2012, retrieved from AlterNet: http://www.alternet.org/story/155039/where_no_city_has_gone_before%3A_san_francisco_will_be_world’s_first_zero-waste_town_by_2020 [Google Scholar]
  52. D. Sullivan, Zero waste on San Francisco’s horizon, Biocycle 52, 28 (2011) [Google Scholar]
  53. M. Diamond, San Francisco: sustainability and the new energy horizon in a model city, Urban Sustainability Programs: Case Studies, 2013, p. 132 [Google Scholar]
  54. P. Kumar, G. Bhowmick, Solid waste management – the obvious answer, in Environment Management with Indian Experience (APH Publishing Corporation, New Delhi, 1998), pp. 173–176 [Google Scholar]
  55. A.L. Bufoni, L.B. Oliveira, L.P. Rosa, The declared barriers of the large developing countries waste management projects: the STAR model, Waste Manag. 52, 326–338 (2016) [CrossRef] [Google Scholar]
  56. C.R. Lohri, E.J. Camenzind, C. Zurbrügg, Financial sustainability in municipal solid waste management − costs and revenues in Bahir Dar, Ethiopia, Waste Manag. 34, 542–552 (2014) [CrossRef] [Google Scholar]
  57. H. Armstrong, Sustainable energy landscapes: designing, planning and development, Landsc. Res. 40, 510–512 (2015) [CrossRef] [Google Scholar]
  58. P. Andrews-Speed, Applying institutional theory to the low-carbon energy transition, Energy Res. Social Sci. 13, 216–225 (2016) [CrossRef] [Google Scholar]
  59. E. Den Boer, J. den Boer, J. Jager, Waste management planning and optimisation (LCA IWM, Stuttgart, Germany, 2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.