Open Access

This article has an erratum: []

Renew. Energy Environ. Sustain.
Volume 8, 2023
Article Number 23
Number of page(s) 15
Published online 29 November 2023
  1. ANEEL, Unidades com Geração Distribuída, 2023. [Online] Available: [Google Scholar]
  2. ANEEL, SIGA F −S Sistema de Informações de Geração da ANEEL, 2023. [Online] Available: [Google Scholar]
  3. P. Mints, PV Market Report, The Solar Flare, Issue 2, SF-22023, SPV Market Research, April 30, 2023; See also, SPV Market Research, Photovoltaics Manufacturer Capacity, Shipments, & Revenues 2022/2023, SPV-Suppl 11, April 2023, [Google Scholar]
  4. REN21, Renewables 2023 Global Status Report: Demand Module Report, REN21 Secretariat, UN Environment Programme, Paris, France, 2023. https://www., ren21., net/wp-content/uploads/2019/05/GSR 2023_Demand_Modules.pdf; And, Renewables 2023 Global Status Report: Supply Module Report. REN21 Secretariat, UN Environment Programme, Paris, France, 2023 [Google Scholar]
  5. International Technology Roadmap for Photovoltaic (ITRPV), 2017–2022 Results. 9–14 Editions, April 2018-April 2023. [Google Scholar]
  6. H. Mori, US Patent 3,278,811, Radiation energy transducing device, Filed October 3, 1961; Published October 11, 1966 [Google Scholar]
  7. N.M. Bordina et al., US Patent 3,278,811, Radiation Energy Transducing Device, Filed 1974, Issued Oct. 11, 1966 [Google Scholar]
  8. N.M. Bordina, T.M. Golovner, V.V. Zadde, K.N. Zaitseva, A.P. Landsman, V.I. Streltsova, Operation of a thin silicon photoconverter under illumination on both sides, Appl. Sol. Energy 11, 81086 (1975) [Google Scholar]
  9. A. Zak, Salyut-3 (OPS-2) space station. Accessed 29 April 2021. Satellite launched June 25, 1974 [Google Scholar]
  10. A. Zak, Anatoly. OPS-3 (Salyut-5) space station. RussianSpaceWeb. com Retrieved 1 January 2011. Satellite launched June 22, 1976 [Google Scholar]
  11. A. Luque et al. Spain Patent ES 453575A1, Procedimiento para la conversion de energia solar y dispositive para la puesta en practica de este procedimiento, Filing 24 November 1976 [Google Scholar]
  12. A. Luque, U.S. Patent US 4169738, Double–sided solar cell with self-refrigerating concentrator. Filing date: 21 November 1977 [Google Scholar]
  13. A. Luque, Spain Patent ES458514A1, Procedure for obtaining bifacial solar cells, issued April 16, 1978 [Google Scholar]
  14. A. Luque, Spain Patent ES 4535 75A1, Procedure for the photovoltaic conversion of solar energy and device for the put into practice of this procedure. Issued: December 1, 1977 [Google Scholar]
  15. A. Luque, US Patent US 4169 738A, Double-sided solar cell with self-refrigerating concentrator, Issued: Oct 2, 1979 [Google Scholar]
  16. A. Cuevas, A. Luque, J. Eguren, J. del Alamo, 50% more output power from an albedo-collecting flat panel using bifacial solar cells, Sol. Energy 19, 419–420 (1982) [CrossRef] [Google Scholar]
  17. A. Luque, J.M. Ruiz, A. Cuevas, J. Eguren, J.M. Gómez-Agost, Double-sided solar cells to improve static concentration. Proceedings of the 1st. European Conference on Photovoltaic Solar Energy, 1977, pp. 269–277. [Google Scholar]
  18. A. Luque, A. Cuevas, J.M. Ruiz, Double-sided n+-p-n+ solar cell for bifacial concentration, Sol. Cells 2, 151–166 (1980) [CrossRef] [Google Scholar]
  19. A. Luque, A. Cuevas, J. Eguren, Solar cell behavior under variable surface recombination velocity and proposal of a novel structure, Solid State Electron. 21, 793–794 (1978) [CrossRef] [Google Scholar]
  20. K. Jaeger, R. Hezel, Bifacial MIS inversion layer solar cells based on low temperature silicon surface passivation. Proceedings of the 19th IEEE Photovoltaic Specialists Conference (PVSC), New Orleans, 1987, pp. 388–391 [Google Scholar]
  21. J. Eguren, J. Del Alamo, A. Luque, Optimization of p+ doping level n+-p-p+ bifacial solar cells by ion implantation, Electron. Lett. 16, 633–634 (1980) [CrossRef] [Google Scholar]
  22. A. Cuevas, A. Luque, J. Eguren, J. del Alamo, High efficiency bifacial back surface field solar cells, Sol. Cells 3, 337–340 (1981) [CrossRef] [Google Scholar]
  23. A. Luque, J. Eguren. High injection phenomena in p+-i-n+ silicon solar cells, Solid State Electron. 25, 797–809 (1982) [CrossRef] [Google Scholar]
  24. J. Eguren, J. del Alamo, A. Cuevas, A. Luque, High Efficiency p+nn+ bifacial solar cells. Proc. 15th IEEE Photovoltaic Specialists Conference, 1982, pp. 1343–1348 [Google Scholar]
  25. J. Sangrador, G. Sala, Two-dimensional analysis of the collection efficiency of vertical multijunction solar cells. Proc. 1979 International Electron Devices Meeting, 1979, pp. 318–321 [CrossRef] [Google Scholar]
  26. J. Eguren, F. Martínez-Moreno, P. Merodio, E. Lorenzo, First bifacial PV modules early 1983, Sol. Energy. 243, 327–335 (2022) [CrossRef] [Google Scholar]
  27. T. Nordmann, T. Vontobel, L. Clavadetsche, 15 years of practical experience in development and improvement of bifacial photovoltaic noise barriers along highways and railway lines in Switzerland. Proc. 26th European PV Solar Energy Conference, Frankfurt, Germany, September 2012 [Google Scholar]
  28. A.W. Blakers, M.J. Stocks, K.J. Weber, V. Everett, J. Babaei, P. Verlinden, M. Kerr, M. Stuckings, P. Mackey, Sliver Solar Cells. Proc. 13th NREL Workshop on Crystalline Si Materials and Processing, Vail, Colorado, 2003 [Google Scholar]
  29. K.J. Weber, A.W. Blakers, M.J. Stocks, J.H. Babaei, V.A. Everett, A.J. Neuendorf, P. Verlinden, A novel low cost, high efficiency micromachined silicon solar cell, Electron Device Lett. 25, 37–39 (2004) [CrossRef] [Google Scholar]
  30. T.S. Liang, M. Pravettoni, C. Deline, J.S. Stein, R. Kopecek, J.P. Singh, A review of crystalline silicon bifacial photovoltaic performance characterization and simulation, Energy Environ. Sci. 143, 1285–1298 (2019) [Google Scholar]
  31. W. Gu, T. Ma, Tao; A, Ahmed, Y. Zang, J. Peng, A comprehensive review and outlook of bifacial photovoltaic (bPV) technology, Energy Convers. Manag. 223, 113283 (2020) [CrossRef] [Google Scholar]
  32. R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, L.E. Shephard, Bifacial solar photovoltaics − A technology review, Renew. Sustain. Energy Rev. 60, 1533–154 (2016) [CrossRef] [Google Scholar]
  33. A. Pan, C. del Cañizo, A. Luque, Effect of thickness on bifacial silicon solar cells. Proc. 2007 Spanish Conference on Electron Devices, 2007, pp. 234–237 [Google Scholar]
  34. H. Ohtsuka, M. Sakamoto, M. Koyama, K. Tsutsui, T. Uematsu, Y. Yazawa, Characteristics of bifacial solar cells under bifacial illumination with various intensity levels, Prog. Photovolt. 9, 1–13 (2001) [CrossRef] [Google Scholar]
  35. K.R. McIntosh, C.B. Honsberg, S.R. Wenham, The impact of rear illumination on bifacial solar cells with coating junction passivation. Proc. of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 1998, pp. 1515–1518 [Google Scholar]
  36. A. Mohlecke, I. Zanesco, A. Luque. Practical high efficiency bifacial solar cells. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC, Hawaii). Vol. 2, 1994, pp. 1663–1666 [Google Scholar]
  37. E. Lorenzo, On the historical origins of bifacial PV modelling, Sol. Energy 218, 587–595 (2021) [CrossRef] [Google Scholar]
  38. IEA, Snapshot of Global PV Markets 2023, 2023, p. 4 [Google Scholar]
  39. Senegal PV Plant, Accessed August 2023 See, [Google Scholar]
  40. T. Nordmann, K. Reiche, G. Kleiss, A. Frölich, A. Goetzberger, Integrated PV noise barriers: six innovative facilities, a German/Swiss technological and economical success story. Proceedings of the 2nd World Conference of Photovoltaic Solar Energy Conversion, Vienna, 1998, pp. 2486–2491 [Google Scholar]
  41. PVG Solutions, World large scale 1.25MW bifacial PV power plant on snowy area in Japan. Proc. 3 bifi PV Workshop, Miyazaki, Japan, September 2016. [Google Scholar]
  42. J. Libal, R. Kopecek, Bifacial photovoltaics: Technology, application and economics, Institute of Engineering and Technology (IET), 2019. [Google Scholar]
  43. Kelly Pickerel, First Solar develops bifacial CdTe thin-film solar panel, Solar Power World, June 14, 2023. [Google Scholar]
  44. A. Blakers, Development of the PERC Solar Cell, IEEE J. Photovolt. 9, 629–635 (2019) [CrossRef] [Google Scholar]
  45. Solar Power World, LONGi Solar reaches 24.06% efficiency with its bifacial mono-PERC modules. January 16, 2019. [Google Scholar]
  46. PVTECH, Trina Solar launches 425Wp bifacial i-TOPCon module. June 13, 2019. [Google Scholar]
  47. PV Magazine, Trina Solar achieves 25.5% efficiency in n-type TOPCon solar cell, 2022. [Google Scholar]
  48. International Energy Commission, IEC TS 6090 4-1-2, Technical Specification for Bifacial PV Devices, Accessed August 2023. [Google Scholar]
  49. J. Lopez-Garcia, E. Ozkalay, R.P. Kenny et al., Implementation of the IEC TS 60904- 1–2 Measurement Methods for Bifacial Silicon PV Devices, IEEE J. Photovolt. 12, 787–797 (2022) [CrossRef] [Google Scholar]
  50. L.L. Kazmerski, D.A. Cassini, D.S. Braga, S.C.S. Costa, V.C. Santana, V.C.A.S.A.C. Diniz. Proc. 50th IEEE Photovoltaic Specialists Conference, San Juan, Puerto Rico. IEEE, New York, 2023. (in- press) [Google Scholar]
  51. M. Iqbal, An introduction to solar radiation (Academic Press, New York, 1983) [Google Scholar]
  52. J. Guerrero-Pérez, I. Muñoz Benavente, J. Navarro Berbel, The Bifacial Year, Soltec BiTEC Results 4 (2019). [Google Scholar]
  53. Hukseflux - How to measure albedo for bifacial PV. 2023. [Online] Accessed August 2023: [Google Scholar]
  54. B. Marion, Albedo data sets for bifacial PV systems. Preprint Report, National Renewable Energy Laboratory, Golden, CO. NREL/CP-5K00-75924, 2022. [Google Scholar]
  55. J.H. Wohlgemuth, S. Kurtz, Reliability testing beyond qualification as a key component in photovoltaics progress toward grid parity, Proceedings of the IEEE International Reliability Physics Symposium, Monterey, 5E. 3.1–5E, 2011 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.