Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 8, 2023
Article Number 18
Number of page(s) 12
DOI https://doi.org/10.1051/rees/2023018
Published online 22 September 2023
  1. S. Sobria, S. Koohi-Kamalia, N.A. Rahima, Solar photovoltaic generation forecasting methods: a review, Energy Convers. Manag. 156, 459 (2018) [CrossRef] [Google Scholar]
  2. D. Yang et al., A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: towards carbon neutrality, Renew. Energy Environ. Sustain. 161, 112348 (2022) [CrossRef] [Google Scholar]
  3. B.J. Martins et al., Systematic review of nowcasting approaches for solar energy production based upon ground-based cloud imaging, Sol. Energy Adv. 2, 100019 (2022) [CrossRef] [Google Scholar]
  4. B. Nouri et al., Probabilistic solar nowcasting based on all-sky imagers, Sol. Energy 253, 285 (2023) [CrossRef] [Google Scholar]
  5. A.T. Lorenzo, W.F. Holmgren, A.D. Cronin, Irradiance forecasts based on an irradiance monitoring network, cloud motion, and spatial averaging, Sol. Energy 122, 1158 (2015) [CrossRef] [Google Scholar]
  6. X. Chen et al., Sensor network based PV power nowcasting with spatio-temporal preselection for grid-friendly control, Appl. Energy 255, 113760 (2019) [CrossRef] [Google Scholar]
  7. T. Schmidt et al., Short-term solar forecasting based on sky images to enable higher PV generation in remote electricity networks, Renew. Energy Environ. Sustain. 2, 23 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  8. Z. Peng et al., 3D cloud detection and tracking system for solar forecast using multiple sky imagers, Sol. Energy 118, 496 (2015) [CrossRef] [Google Scholar]
  9. Z. Peng et al., A hybrid approach to estimate the complex motions of clouds in sky images, Sol. Energy 138, 10 (2016) [CrossRef] [Google Scholar]
  10. B. Nouri et al., Cloud height and tracking accuracy of three all sky imager systems for individual clouds, Sol. Energy 177, 213 (2019) [CrossRef] [Google Scholar]
  11. F.J. Rodríguez-Benítez et al., Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery, Appl. Energy 292, 116838 (2021) [CrossRef] [Google Scholar]
  12. A.H. Eslik et al., Short-term solar radiation forecasting with a novel image processing-based deep learning approach, Renew. Energy 200, 1490 (2022) [CrossRef] [Google Scholar]
  13. T. Bando et al., Statistical analysis of cloud layers and derivation of motion directions of two layer clouds, IEEJ Trans. Power Energy 142, 490 (2022) [Google Scholar]
  14. J. Kleissl, Solar energy forecasting and resource assessment (Elsevier, 2013) [Google Scholar]
  15. R. Blaga, M. Paulescu, Quantifiers for the solar irradiance variability: a new perspective, Sol. Energy 174, 606 (2018) [CrossRef] [Google Scholar]
  16. R. Tapakis, A.G. Charalambides, Equipment and methodologies for cloud detection and classification: a review, Sol. Energy 95, 392 (2013) [CrossRef] [Google Scholar]
  17. P.D. Clift, R. Alan Plumb, The Asian monsoon causes, history and effects (Cambridge University Press, 2008) [CrossRef] [Google Scholar]
  18. K.-J. Ha et al., Variability in the East Asian monsoon: a review, Meteorol. Appl. 19, 200 (2012) [CrossRef] [Google Scholar]
  19. K.-J. Ha et al., Linkages between the South and East Asian summer monsoons: a review and revisit, Clim Dyn. 51 4207 (2018) [CrossRef] [Google Scholar]
  20. K. Venkata Subrahmanyam, K. Kishore Kumar, CloudSat observations of multi layered clouds across the globe, Clim Dyn. 49, 327 (2017) [CrossRef] [Google Scholar]
  21. J.M. Haynes et al., Low cloud detection in multilayer scenes using satellite imagery with machine learning methods, J. Atmos. Ocean. Technol. 39, 319 (2022) [CrossRef] [Google Scholar]
  22. A.A. Piedehierro et al., Evaluation of enhancement events of total solar irradiance during cloudy conditions at Granada (Southeastern Spain), Atmos. Res. 135136, 1 (2014) [Google Scholar]
  23. R. Tapakis, A.G. Charalambides, Enhanced values of global irradiance due to the presence of clouds in Eastern Mediterranean, Renew. Energy 62, 459 (2014) [CrossRef] [Google Scholar]
  24. R.C. de Andrade, C. Tiba, Extreme global solar irradiance due to cloud enhancement in northeastern Brazil, Renew. Energy 86, 1433 (2016) [CrossRef] [Google Scholar]
  25. R.H. Inman, Y. Chu, C.F.M. Coimbra, Cloud enhancement of global horizontal irradiance in California and Hawaii, Sol. Energy 130, 128 (2016) [CrossRef] [Google Scholar]
  26. A. Castillejo-Cubero, R. Escobar, Detection and characterization of cloud enhancement events for solar irradiance using a model-independent, statistically-driven approach, Sol. Energy 209, 547 (2020) [CrossRef] [Google Scholar]
  27. A.K. Yadav, S.S. Chandel, Tilt angle optimization to maximize incident solar radiation: a review, Renew. Energy Environ. Sustain. 23, 503 (2013) [CrossRef] [Google Scholar]
  28. V. Badescu, Modeling solar radiation at the earth's surface (Springer, 2008) [Google Scholar]
  29. G. Notton et al., Calculation of solar irradiance profiles from hourly data to simulate energy systems behaviour, Renew. Energy 27, 123 (2002) [CrossRef] [Google Scholar]
  30. A.M. Whitman, A simple expression for the equation of time, J. North Am. Sundial Soc. 14, 29 (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.