Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 7, 2022
Article Number 19
Number of page(s) 19
DOI https://doi.org/10.1051/rees/2022010
Published online 06 July 2022
  1. A.P. Jones, Indoor air quality and health, Atmos. Environ. 33, 4535–4564 (1999) [CrossRef] [Google Scholar]
  2. J.J. Kim, Ambient air pollution: health hazards to children, Pediatrics 114, 1699–1707 (2004) [CrossRef] [Google Scholar]
  3. B.G. Kim, M.K. Park, Interleukin-17 can be the target of novel treatment strategies for particulate matter-induced allergic diseases, Allergy Asthma Immunol. Res. 14, 5 (2022) [CrossRef] [Google Scholar]
  4. Z.J. Andersen, B. Hoffmann, L. Morawska, M. Adams, E. Furman, A. Yorgancioglu, S. De Matteis, Air pollution and COVID-19: clearing the air and charting a post-pandemic course: a joint workshop report of ERS, ISEE, HEI and WHO, Eur. Respir. J. 58 (2021) [Google Scholar]
  5. S. Salvador, E. Salvador, Overview of particle Air Pollution (PM2. 5 and PM10), in Quality Communication Workshop (2012) [Google Scholar]
  6. M. Filonchyk, H. Yan, S. Yang, V. Hurynovich, A study of PM 2.5 and PM 10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer period, J. Earth Syst. Sci. 125, 1175–1187 (2016) [CrossRef] [Google Scholar]
  7. M.T. Chaichan, H.A. Kazem, T.A. Abed, Traffic and outdoor air pollution levels near highways in Baghdad, Iraq, Environ. Dev. Sustain. 20, 589–603 (2018) [CrossRef] [Google Scholar]
  8. N.H. Hamza, N.S. Ekaab, M.T. Chaichan, Impact of using Iraqi biofuel-kerosene blends on coarse and fine particulate matter emitted from compression ignition engines, Alexandria Eng. J. 59, 1717–1724 (2020) [CrossRef] [Google Scholar]
  9. W.K. Ahmed, A.Q. Salam, M.T. Mahdiy, M.T. Chaichan, Environmental impact of using generators in the university of technology in Baghdad, Iraq, J. Thermal Eng. 6, 272–281 (2020) [CrossRef] [Google Scholar]
  10. M.C. Borges, F. Pallas, M. Peise, Providing open environmental data—the scalable and web-friendly way, in Advances and New Trends in Environmental Informatics (Springer, Cham, 2018), pp. 21–37 [CrossRef] [Google Scholar]
  11. S.S. Amaral, J.A. De Carvalho, M.A.M. Costa, C. Pinheiro, An overview of particulate matter measurement instruments, Atmosphere 6, 1327–1345 (2015) [CrossRef] [Google Scholar]
  12. T. Nussbaumer, C. Czasch, N. Klippel, L. Johansson, C. Tullin, Particulate emissions from biomass combustion in IEA countries, Survey on Measurements and Emission Factors (2008) International Energy Agency (IEA) Bioenergy Task, 32 [Google Scholar]
  13. B. Giechaskiel, M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, W. Schindler, Review of motor vehicle particulate emissions sampling and measurement: from smoke and filter mass to particle number, J. Aeros. Sci. 67, 48–86 (2014) [CrossRef] [Google Scholar]
  14. W.C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particles (John Wiley & Sons, 1999) [Google Scholar]
  15. D.A. Lack, E.R. Lovejoy, T. Baynard, A. Pettersson, A.R. Ravishankara, Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments, Aerosol Sci. Technol. 40, 697–708 (2006) [CrossRef] [Google Scholar]
  16. D. Mellon, S.J. King, J. Kim, J.P. Reid, A.J. Orr-Ewing, Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy, J. Phys. Chem. A 115, 774–783 (2011) [CrossRef] [Google Scholar]
  17. A. Pettersson, E.R. Lovejoy, C.A. Brock, S.S. Brown, A.R. Ravishankara, Measurement of aerosol optical extinction at 532nm with pulsed cavity ring down spectroscopy, J. Aerosol Sci. 35, 995–1011 (2004) [CrossRef] [Google Scholar]
  18. R. Jiang, M.L. Bell, A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China, Environ. Health Perspect. 116, 907–914 (2008) [CrossRef] [Google Scholar]
  19. M. Elsasser, M. Crippa, J. Orasche, P.F. DeCarlo, M. Oster, M. Pitz, R. Zimmermann, Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany, Atmos. Chem. Phys. 12, 6113–6128 (2012) [CrossRef] [Google Scholar]
  20. M. Rogulski, A. Badyda, Investigation of low-cost and optical particulate matter sensors for ambient monitoring, Atmosphere 11, 1040 (2020) [CrossRef] [Google Scholar]
  21. J.H. Yousif, H.A. Al-Balushi, H.A. Kazem, M.T. Chaichan, Analysis and forecasting of weather conditions in Oman for renewable energy applications, Case Stud. Thermal Eng. 13, 100355 (2019) [CrossRef] [Google Scholar]
  22. M.B. Marinov, I. Topalov, E. Gieva, G. Nikolov, Air quality monitoring in urban environments, in 2016 39th International Spring Seminar on Electronics Technology (ISSE). (IEEE, 2016), pp. pp. 443–448 [CrossRef] [Google Scholar]
  23. M. Taştan, H. Gökozan, Real-time monitoring of indoor air quality with internet of things-based E-nose, Appl. Sci. 9, 3435 (2019) [CrossRef] [Google Scholar]
  24. A. Gupta, R. Kumar, An IOT enabled air quality measurement, Indian J. Sci. Technol. 11 (2018) [CrossRef] [Google Scholar]
  25. T.P. Truong, D.T. Nguyen, P.V. Truong, Design and deployment of an IoT-based air quality monitoring system, Int. J. Environ. Sci. Dev. 12 (2021) [Google Scholar]
  26. R. Senthilkumar, P. Venkatakrishnan, N. Balaji, Intelligent based novel embedded system based IoT enabled air pollution monitoring system, Microprocess. Microsyst, 77, 103172 (2020) [CrossRef] [Google Scholar]
  27. C. Badii, S. Bilotta, D. Cenni, A. Difino, P. Nesi, I. Paoli, M. Paolucci, High density real-time air quality derived services from IoT networks, Sensors 20, 5435 (2020) [CrossRef] [Google Scholar]
  28. R. Senthilkumar, P. Venkatakrishnan, N. Balaji, Intelligent based novel embedded system based IoT enabled air pollution monitoring system, Microprocess. Microsyst, 77, 103172 (2020) [CrossRef] [Google Scholar]
  29. The SDS011 Air Quality Sensor experiment, [available online] link: https://aqicn.org/sensor/sds011/pt/, (Retrieved 7th of February 2022) [Google Scholar]
  30. floriswouterlood. “Fine dust monitoring/logging at luftdaten.info with a Nova PMI SDS011 sensor, a NodeMCU ESP 8266 and the internet”. Thesolaruniverse [Available online]. Link: https://thesolaruniverse.wordpress.com/2019/06/13/fine-dust-monitoring-logging-at-luftdaten-info-with-a-nova-pmi-sds011-sensor-a-nodemcu-esp8266-and-the-internet/ (Retrieved 7th of February 2022) [Google Scholar]
  31. J.H. Jo, B. Jo, J.H. Kim, I. Choi, Implementation of iot-based air quality monitoring system for investigating particulate matter (Pm10) in subway tunnels, Int. J. Environ. Res. Public Health 17, 5429 (2020) [CrossRef] [Google Scholar]
  32. M. Tagle, F. Rojas, F. Reyes, Y. Vásquez, F. Hallgren, J. Lindén, P. Oyola, Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile, Environ. Monitor. Assess. 192, 1–18 (2020) [CrossRef] [Google Scholar]
  33. M.F. Khan, Y. Shirasuna, K. Hirano, S. Masunaga, Characterization of PM2.5, PM2.5–10 and PM> 10 in ambient air, Yokohama, Japan, Atmos. Res. 96, 159–172 (2010) [CrossRef] [Google Scholar]
  34. A. Herrmann, R. Fix, Air quality measurement based on advanced PM2.5 and VOC sensor technologies, Sensors Trans., 243, 1–5 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.