Open Access
Issue |
Renew. Energy Environ. Sustain.
Volume 7, 2022
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/rees/2022006 | |
Published online | 24 June 2022 |
- M.R. Vishnuvardhan, V.P. Chandramohan, Comparison of drying kinetics, thermal and performance parameters during drying guava slices in natural and forced convection indirect solar dryers, Sol. Energy 234, 319–329 (2022) [CrossRef] [Google Scholar]
- H. Moussaoui, M. Kouhila, H. Lamsyehe, A. Idlimam, A. Lamharrar, Moisture sorption measurements and thermophysical characterization of the Taraxacum officinale leaves and root, Heat Mass Transf. Und Stoffuebertragung (2020) https://doi.org/10.1007/s00231-020-02838-5 [Google Scholar]
- H. Moussaoui, Y. Bahammou, Z. Tagnamas, M. Kouhila, A. Lamharrar, A. Idlimam, Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer, Renew. Energy 168, 131–140 (2021) [CrossRef] [Google Scholar]
- N. Jiang et al., Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption, LWT-Food Sci. Technol. 82, 216–226 (2017) [CrossRef] [Google Scholar]
- F. Xing et al, Distribution and variation of fungi and major mycotoxins in pre-and post-nature drying maize in North China Plain, Food Control 80, 244–251 (2017) [CrossRef] [Google Scholar]
- E. Nuroğlu, E. Öz, S. Bakırdere, E.O. Bursalıoğlu, H.B. Kavanoz, O. İçelli, Evaluation of magnetic field assisted sun drying of food samples on drying time and mycotoxin production, Innov. Food Sci. Emerg. Technol. 52, 237–243 (2019) [CrossRef] [Google Scholar]
- M.H. Taniwaki, J.I. Pitt, N. Magan, Aspergillus species and mycotoxins: occurrence and importance in major food commodities, Curr. Opin. Food Sci. 23, 38–43 (2018) [CrossRef] [Google Scholar]
- M. Moradi, M. Azizi-Lalabadi, P. Motamedi, E. Sadeghi, Electrochemical determination of T2 toxin by graphite/polyacrylonitrile nanofiber electrode, Food Sci. Nutr. 9, 1171–1179 (2021) [CrossRef] [Google Scholar]
- Z. Farkas, E. Országh, T. Engelhardt, S. Csorba, K. Kerekes, A. Zentai, M. Süth, A. Nagy, G. Miklós, K. Molnár, A systematic review of the efficacy of interventions to control aflatoxins in the dairy production chain – feed production and animal feeding interventions, MDPI: Toxins 14, 115 (2022) [CrossRef] [Google Scholar]
- FAO, What are mycotoxins? (2016)) http://www.fao.org/3/y1390e/y1390e02.htm (accessed Jun. 08, (2021) [Google Scholar]
- P. Singhal, S. Satya, S.N. Naik, Effect of different drying techniques on the nutritional, antioxidant and cyanogenic profile of bamboo shoots, Appl. Food Res. 2, 100036 (2022) [CrossRef] [Google Scholar]
- J. Huang, M. Zhang, Effect of three drying methods on the drying characteristics and quality of okra, Dry. Technol. 34, 900–911 (2016) [CrossRef] [Google Scholar]
- D.I. Onwude, N. Hashim, K. Abdan, R. Janius, G. Chen, The effectiveness of combined infrared and hot-air drying strategies for sweet potato, J. Food Eng. 241, 75–87 (2019) [CrossRef] [Google Scholar]
- X. Zhou, R. Li, J.G. Lyng, S. Wang, Dielectric properties of kiwifruit associated with a combined radio frequency vacuum and osmotic drying, J. Food Eng. 239, 72–82 (2018) [CrossRef] [Google Scholar]
- M.L. Magalhães et al, Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying, J. Food Eng. 215, 72–77 (2017) [CrossRef] [Google Scholar]
- A. Chakraverty, Post Harvest Technology of Cereals, Pulses and Oilseeds (Oxford and IBH Publishing Company Pvt. Ltd, New Delhi, (2004) [Google Scholar]
- S. Kumar, S.V. Jadhav, B.N. Thorat, Life cycle assessment of tomato drying in heat pump and microwave vacuum dryers, Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2021.12.333 [Google Scholar]
- A.S. Mujumdar, Some recent developments in drying technologies appropriate for postharvest processing, Int. J. Postharvest Technol. Innov. 1, 76–92 (2006) [CrossRef] [Google Scholar]
- B.O. Bolaji, A.P. Olalusi, Performance evaluation of a mixed-mode solar dryer (2008) [Google Scholar]
- A.B. Lingayat, V.P. Chandramohan, V.R.K. Raju, V. Meda, A review on indirect type solar dryers for agricultural crops – dryer setup, its performance, energy storage and important highlights, Appl. Energy 258, 114005 (2020) [CrossRef] [Google Scholar]
- A. Madhlopa, S.A. Jones, J.D.K. Saka, A solar air heater with composite–absorber systems for food dehydration, Renew. Energy 27, 27–37 (2002) [CrossRef] [Google Scholar]
- H.P. Bhavsar, Performance evaluation of various types of solar dryer and drying technologies, Int. J. Adv. Sci. Technol. 29, 6020–6032 (2020) [Google Scholar]
- I.T. Toğrul, D. Pehlivan, Modelling of thin layer drying kinetics of some fruits under open-air sun drying process, J. Food Eng. 65, 413–425 (2004) [CrossRef] [Google Scholar]
- V. Demir, T. Gunhan, A.K. Yagcioglu, Mathematical modelling of convection drying of green table olives, Biosyst. Eng. 98, 47–53 (2007) [CrossRef] [Google Scholar]
- J.K. Afriyie, Design, Simulation and Optimisation of a Chimney-Dependent Direct-Mode Solar Crop Dryer (CDSCD), De Montfort University (2007) [Google Scholar]
- J.K. Afriyie, M.A.A. Nazha, H. Rajakaruna, F.K. Forson, Experimental investigations of a chimney-dependent solar crop dryer, Renew. Energy 34, 217–222 (2009) [CrossRef] [Google Scholar]
- J.K. Afriyie, H. Rajakaruna, M.A.A. Nazha, F.K. Forson, Simulation and optimisation of the ventilation in a chimney-dependent solar crop dryer, Sol. Energy 85, 1560–1573 (2011) [CrossRef] [Google Scholar]
- J.K. Afriyie, A. Bart-Plange, Performance investigation of a chimney-dependent solar crop dryer for different inlet areas with a fixed outlet area, ISRN Renew. Energy 2012, 1–9 (2012) [CrossRef] [Google Scholar]
- J.K. Afriyie, H. Rajakaruna, M.A.A. Nazha, F.K. Forson, Mathematical modelling and validation of the drying process in a Chimney-dependent solar crop dryer, Energy Convers. Manag. 67, 103–116 (2013) [CrossRef] [Google Scholar]
- S. Zorya et al, Missing food: the case of postharvest grain losses in sub-Saharan Africa (2011) [Google Scholar]
- P. Chantawong, J. Hirunlabh, B. Zeghmati, J. Khedari, S. Teekasap, M.M. Win, Investigation on thermal performance of glazed solar chimney walls, Sol. Energy 80, 288–297 (2006) [CrossRef] [Google Scholar]
- A.G. Ferreira, C.B. Maia, M.F.B. Cortez, R.M. Valle, Technical feasibility assessment of a solar chimney for food drying, Sol. Energy 82, 198–205 (2008) [CrossRef] [Google Scholar]
- Z.D. Chen, P. Bandopadhayay, J. Halldorsson, C. Byrjalsen, P. Heiselberg, Y. Li, An experimental investigation of a solar chimney model with uniform wall heat flux, Build. Environ. 38, 893–906 (2003) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.