Issue
Renew. Energy Environ. Sustain.
Volume 7, 2022
Achieving Zero Carbon Emission by 2030
Article Number 21
Number of page(s) 8
DOI https://doi.org/10.1051/rees/2022005
Published online 29 July 2022
  1. World Meteorological Organization, International Meteorological Vocabulary, 2nd ed. (WHO, Geneva, 1992), (WMO, n.182) [Google Scholar]
  2. World Meteorological Organization and UNESCO, Lightning for Climate: A Study by the Task Team on Lightning Observation for Climate Applications (TT-LOCA) Of the Atmospheric Observation Panel for Climate (AOPC) | E-Library (World Meteorological Organization, 2019), [Google Scholar]
  3. NOAA National Severe Storms Laboratory, Lightning Basics (2015). https://www.nssl.noaa.gov/education/svrwx101/lightning/ [Google Scholar]
  4. M. Froese, Preparing turbines for lightning strikes. Windpower Engineering & Development (2018). https://www.windpowerengineering.com/preparing-turbines-for-lighting-strikes/ [Google Scholar]
  5. K.P. Naccarato, Analise das características dos relâmpagos na região Sudeste do Brasil (Thesis). Instituto Nacional de Pesquisas Espaciais (INPE) (2005) http://mtc-m16b.sid.inpe.br/col/sid.inpe.br/MTC-m13@80/2005/09.28.19.00/doc/publicacao.pdf [Google Scholar]
  6. N.P. Silva, A.C. Francisco, J.L. Kovaleski, M.S. Thomaz, Avaliação do impacto das descargas atmosféricas na qualidade de energia fornecida pelas concessionarias: Estudo de caso em uma empresa de distribuição de energia do Sul do pais, Nucleus vol. 7, pp. 139–154, 2010 [CrossRef] [Google Scholar]
  7. World Meteorological Organization, WMO certifies Megaflash lightning extremes (2020). [Google Scholar]
  8. Y. Yasuda, N. Uno, H. Kobayashi, T. Funabashi, Surge analysis on wind farm when winter lightning strikes, IEEE Trans. Energy Convers. 23, pp. 257–262, (2008) [CrossRef] [Google Scholar]
  9. M.V.E.S. Melo, Linhas de transmissão e descargas atmosféricas: Analise de avarias, perdas técnico- financeiras e sistemas de proteção (dissertation). Universidade de Brasilia (2016). https://bdm.unb.br/bitstream/10483/17196/1/2016_MarcusViniciusEsteves_tcc.pdf [Google Scholar]
  10. C. Simomura, Sistema Elétrico. Grupo de Eletricidade Atmosférica – ELAT. ELAT Instituto de Pesquisas Espaciais – Inpe (2015). http://www.inpe.br/webelat/homepage/menu/infor/relampagos.e.efeitos/sistema.eletrico.php [Google Scholar]
  11. B.L. Berardo, Estudo do aterramento dos pes de torres de linha de transmissão frente as descargas atmosféricas (dissertation). Universidade Estadual Paulista Julio de Mesquita Filho (2012). https://repositorio.unesp.br/bitstream/handle/11449/87185/berardo_bl_me_bauru.pdf?sequence=1 [Google Scholar]
  12. A.V. Barreto, Vulnerabilidade de linhas de transmissão a desligamentos por descargas atmosféricas: uma proposta de classificação como suporte para o planejamento (dissertation). COPPE UFRJ (2016). http://www.ppe.ufrj.br/index.php/pt/publicacoes/dissertacoes/2016/335-vulnerabilidade-de-linhas-de-transmissao-adesligamentos- por-descargas-atmosfericas-uma-proposta-de-classificacao-como-suporte-para-o-planejamento [Google Scholar]
  13. D.C. Mangueira, VI. Descargas atmosféricas em linhas de transmissão [E-book]. In Aspectos a Serem Considerados no estudo da Incidência de Descargas Atmosféricas Em Linhas de Transmissão (2016), pp. 129–161. [Google Scholar]
  14. W. Freire, Descarga atmosférica e falha humana respondem por 29% dos desligamentos na rede, diz Aneel. Canal Energia (2020). https://canalenergia.com.br/noticias/36910200/descarga-atmosferica-e-falha-humana-respondem-por-29-dosdesligamentos-na-rede-diz-aneel [Google Scholar]
  15. Agência Nacional de Energia Elétrica (Brasil), Relatório de Analise: desligamentos forcados do Sistema de Transmissão/Agencia Nacional de Energia Elétrica. ANEEL (2018). [Google Scholar]
  16. T. Sorensen, F.V. Jensen, N. Raben, J L.. ykkegaard, Lightning protection for offshore wind turbines, in 16th International Conference and Exhibition on ELECTRICITY DISTRIBUTION, Amsterdam (2001). http://www.cired.net/publications/cired2001/4_14.pdf [Google Scholar]
  17. B.K. Galbraith, Better Plan: The trouble with industrial wind farms in Wisconsin - Today’s Special Feature - 7/2/09 If a wind turbine blade explodes in a German forest and no one in the USA hears about it, does it make a sound? Better Plan, Wisconsin (2008). https://betterplan.squarespace.com/todays-special/2009/7/3/7209-if-a-wind-turbine-blade-explodes-in-a-germanforest- and.html [Google Scholar]
  18. J. Montanya, O. van der Velde, E.R. Williams, Lightning discharges are produced by wind turbines, J. Geophys. Res. Atmos. 119, 1455–1462, (2014) [CrossRef] [Google Scholar]
  19. J.M. Wallace, P. Hobbs, Atmospheric Science, Second Edition: An Introductory Survey (International Geophysics), 2nd edn. (Academic Press, 2006) [Google Scholar]
  20. P. Sarajcev, J. Vasilj, R. Goic, Monte Carlo analysis of wind farm surge arresters’ risk of failure due to lightning surges, Renew. Energy vol. 57, 626–634, (2013) [CrossRef] [Google Scholar]
  21. J. Montana, Overview of lightning interaction and damages to wind turbines. INMR World Congress, Sitges-Barcelona (2017). http://hdl.handle.net/2117/117674 [Google Scholar]
  22. S. Soula, J.-F. Georgis, D. Salaun, Quantifying the effect of wind turbines on lightning location and characteristics, Atmos. Res. 221, 98–110, (2019) [CrossRef] [Google Scholar]
  23. W.R.G. Farias, M.F. Correia, Descargas atmosféricas e interrupções de energia elétrica na área da CHESF: relação com variáveis atmosféricas em anos de El Nino e La Nina, Rev. Bras. Meteorolog. 23, 270–(281), 2008 [CrossRef] [Google Scholar]
  24. J. Montanya, F. Fabro, O. van der Velde, V. March, E.R. Williams, N. Pineda, D. Romero, G. Sola, M. Freijo, Global distribution of winter lightning: a threat to wind turbines and aircraft, Natur. Hazards Earth Syst. Sci. 16, 1465–1472, (2016) [CrossRef] [Google Scholar]
  25. D.R. Poelman, W. Schulz, G. Diendorfer, M. Bernardi, The European lightning location system EUCLID – Part 2: Observations, Natur. Hazards Earth Syst. Sci. Discuss. 3, 5357–5381, (2015) [Google Scholar]
  26. V. March, J. Montanya, F. Fabro, O. van der Velde, D. Romero, G. Sola, M. Freijo, N. Pineda, Winter lightning activity in specific global regions and implications to wind turbines and tall structures, in 2016 33rd International Conference on Lightning Protection (ICLP) (2016). https://doi.org/10.1109/iclp.2016.7791447 [Google Scholar]
  27. Y. Yasuda, T. Funabashi, Analysis of Back-Flow Surge in Wind Farms (2007). https://www.researchgate.net/publication/229005527_Analysis_on_Back-Flow_Surge_in_Wind_Farms [Google Scholar]
  28. Y. Yasuda, S. Yokoyama, M. Minowa, T. Satoh, Classification of lightning damage to wind turbine blades, IEEJ Trans. Electr. Electr. Eng. 7, 559–566, (2012) [CrossRef] [Google Scholar]
  29. Finder, Raios e riscos de surtos de tensao. Finder. Switch the Future (2020). https://www.findernet.com/pt-br/brazil/news/raiose-riscos-de-surtos-de-tensao [Google Scholar]
  30. F.H. Silveira, S. Visacro, A. De Conti, C.R. Mesquita, Backflashovers of transmission lines due to subsequent lightning strokes, IEEE Trans. Electromagn. Compat. 54, 316–322, (2012) [CrossRef] [Google Scholar]
  31. S. Visacro, Desligamentos de LT´s por descarga atmosférica [Oral presentation]. Workshop sobre boas praticas executadas em Planos de Melhorias e Providencias das Concessionarias de Transmissão ANEEL-Brasilia, Brasilia, Brazil (2017) [Google Scholar]
  32. Gromicko, N. (n.d.). Wind Turbines and Lightning. InterNACHIR. https://www.nachi.org/wind-turbines-lightning.htm [Google Scholar]
  33. Q. Zhou, C. Liu, X. Bian, K.L. Lo, D. Li, Numerical analysis of lightning attachment to wind turbine blade, Renew. Energy 116, 584–593, (2018) [CrossRef] [Google Scholar]
  34. R. Kithil, Case Study of Lightning Damage to Wind Turbine Blade. National Lightning Safety Institute (NLSI) (2008). http://s3.amazonaws.com/windaction/attachments/1115/wind_blade_damage.pdf [Google Scholar]
  35. B.M. Radičević, M.S. Savić, S.F. Madsen, I. Badea, Impact of wind turbine blade rotation on the lightning strike incidence – a theoretical and experimental study using a reduced-size model, Energy vol. 45, 644–654, (2012) [CrossRef] [Google Scholar]
  36. C. Soraghan, S. Shenton, Repairing Lightning Strike Damage - Executing rope-access blade repairs at a UK offshore wind farm (2018). https://ore.catapult.org.uk/wp-content/uploads/2018/02/Repairing-Lightning-Strike-Damage-CS0019.pdf [Google Scholar]
  37. K. Ortegon, L.F. Nies, J.W. Sutherland, Preparing for end of service life of wind turbines, J. Clean. Prod. 39, 191–199, (2013) [CrossRef] [Google Scholar]
  38. S. Hao, A.T.H. Kuah, C.D. Rudd, K.H. Wong, N.Y.G. Lai, J. Mao, X. Liu, A circular economy approach to green energy: wind turbine, waste, and material recovery, Sci. Total Environ. 702, 135054 (2020) [CrossRef] [Google Scholar]
  39. N. Malcolm, R.K. Aggarwal, The impact of multiple lightning strokes on the energy absorbed by MOV surge arresters in wind farms during direct lightning strikes, Renew. Energy 83, 1305–1314, (2015) [CrossRef] [Google Scholar]
  40. W.P.E.D. Contributor, Lightning, wind turbines, and force majeure — a risky mix. Windpower Engineering & Development (2020, July 14). https://www.windpowerengineering.com/lightning-wind-turbines-and-force-majeure-a-risky-mix/ [Google Scholar]
  41. T. Shindo, T. Suda, A study of lightning risk, IEEJ Trans. Electr. Electr. Eng. 3, 583–589, (2008) [CrossRef] [Google Scholar]
  42. N. Gatzert, T. Kosub, Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks, Renew. Sustain. Energy Rev. 60, 982–998, (2016) [CrossRef] [Google Scholar]
  43. M. Ciucci, Renewable energy | Fact Sheets on the European Union | European Parliament. European Parliament (2020). https://www.europarl.europa.eu/factsheets/en/sheet/70/renewable-energy [Google Scholar]
  44. ARBORE Engenharia, Estudo prévio de impacto ambiental - Complexo eólico - Eólicas Sul, Parque Eólico Água Santa Parque Eólico Serra da Esperança, Parque Eólico Rota das Araucárias (2012) http://www.iap.pr.gov.br/arquivos/File/2014_EIA_RIMA/Palmas/1_EIA_EOLICAS_SUL_FINAL_MAI_2014_compressed.pdf [Google Scholar]
  45. ENGEMAB Engenharia e Meio Ambiente, Relatório Ambiental Simplificado - Central Geradora Eólica Fronteira Sul - Modulo I, II e III (2013). http://licenciamento.ibama.gov.br/Parque%20Eolico/Central%20Geradora%20Fronteira%20Sul%20-%20Modulos%20I,%20II%20e%20III/RAS_CGE%20Fronteira_Sul.pdf [Google Scholar]
  46. TERRAMBIENTAL, Estado de Impacto Ambiental Complexo Eólico do Contestado (2016). https://pt.scribd.com/document/423824464/Estudo-de-Impacto-Ambiental-Complexo-Eolico-do-Contestado [Google Scholar]
  47. Maia Consultoria Ambiental, Relatório Ambiental Simplificado - Parque eólico Minuano (2008). http://licenciamento.ibama.gov.br/Parque%20Eolico/Parque%20Eolico%20Minuano/Estudos/RAS%20binacional%20IBAMA.pdf [Google Scholar]
  48. ATOL AMBIENTAL, Relatório Ambiental Simplificado - Parque Eólico Coxilha Negra (2012). http://licenciamento.ibama.gov.br/Parque%20Eolico/Parque%20Eolico%20Coxilha%20Negra/RAS_EOL_Coxilha%20Negra.pdf [Google Scholar]
  49. SABERES CONSULTORIA, & M.A.R.O.N.C.O.N.S.U.L.T.O.R.I.A, Estudo de Impacto Ambiental - Complexo Eólico Dom Inocêncio Sul (2019). http://licenciamento.ibama.gov.br/UsinaEolica/02001.016849_2018-58%20-%20Complexo%20Eolico%20Dom%20Inocencio%20Sul/EIA%20RIMA/EIA_Estudo_de_Impacto_Ambiental_ Complexo_Eolico_Dom_Inocencio_Sul.pdf [Google Scholar]
  50. AMBIENTALIS ENGENHARIA, Estudo de Impacto Ambiental - Parque eólico e subestação concentradora Urupema (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.