Open Access
Issue |
Renew. Energy Environ. Sustain.
Volume 7, 2022
Achieving Zero Carbon Emission by 2030
|
|
---|---|---|
Article Number | 12 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/rees/2022001 | |
Published online | 26 January 2022 |
- L. Bartocci, C.J. Chiappetta, A.B. Lopes de Sousa, D. Kannan, Sustainability as a dynamic organizational capability: as systematic review and a future agenda toward a sustainable transition, J. Clean. Prod. 142, 308–322 (2017) [CrossRef] [Google Scholar]
- D.L. Edmondson, F. Kern, K.S. Rogge, The co-evolution of policy mixes and socio-technical systems: towards a conceptual framework of policy mix feedback in sustainability transitions, Res. Policy. 48, 103555 (2019) [CrossRef] [Google Scholar]
- European Commission, Energy Roadmap 2050. Luxembourg (2012) [Google Scholar]
- European Commission, In-depth analysis in support on the COM (2018) 773: A Clean Planet for all − A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy (2018) [Google Scholar]
- D.M. Kammen, D.A. Sunter, City-integrated renewable energy for urban sustainability, Science 325, 922–928 (2016) [CrossRef] [Google Scholar]
- P. Villoria Sáez, M.S. Osmani, A diagnosis of construction and demolition waste generation and recovery practice in the European Union, J. Clean. Prod. 241, 118400 (2019) [CrossRef] [Google Scholar]
- M.K. Nematchoua, S. Asadi, S. Reiter, A study of life cycle assessment in two old neighbourhoods in Belgium, Sustain. Cities Soc. 52, 101744 (2020) [CrossRef] [Google Scholar]
- S. Reiter, Life cycle assessment of buildings − a review, in ArcelorMittal International Network in Steel Construction, Sustainability Workshop and Third Plenary Meeting, Bruxelles, Belgique (2010) [Google Scholar]
- B.A. Burgan, M.R. Sansom, Sustainable steel construction, J. Constr. Steel Res. 62, 1178–1183 (2006) [CrossRef] [Google Scholar]
- D.A. Chwieduk, Towards modern options of energy conservation in buildings, Renew. Energy. 101, 1194–1202 (2017) [CrossRef] [Google Scholar]
- K.N. Streicher, P. Padey, D. Parra; M.C. Bürer, M.K. Patel, Assessment of the current thermal performance level of the Swiss residential building stock: statistical analysis of energy performance certificates, Energy Build. 178, 360–378 (2018) [CrossRef] [Google Scholar]
- R. Castaño-Rosa, J. Solís-Guzmán, M. Marrero, Energy poverty goes south? Understanding the costs of energy poverty with the index of vulnerable homes in Spain, Energy Res. Soc. Sci. 60, 101325 (2020) [CrossRef] [Google Scholar]
- B. Serra, P. Verdejo, A. Díaz, R. Merí, Assembling sustainable ideas: the construction process of the proposal SML system at the Solar Dechatlon Europe 2012, Energy Build. 83, 186–194 (2014) [CrossRef] [Google Scholar]
- X. Cao, X. Dai, J. Li, Building energy-consumption status worldwide and the estate-of-the-art technologies for zero-energy buildings during the past decade, Energy Build. 128, 198–213 (2016) [CrossRef] [Google Scholar]
- U. Stritiha, V.V. Tyagib, R. Stropnika, H. Paksoyc, F. Haghighatd, M. Mastani Joybarid, Integration of passive PCM technologies for net-zero energy buildings, Sustain. Cities Soc. 41, 286–295 (2018) [CrossRef] [Google Scholar]
- S. Natephra, N. Yabuki, T. Fukuda, Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation, Build. Environ. 136, 128–145 (2018) [CrossRef] [Google Scholar]
- T. Theodosiou, K. Tsikaloudaki, D. Bikas, Analysis of the thermal bridging effect on ventilated facades, Proc. Environ. Sci. 38, 397–404 (2017) [CrossRef] [Google Scholar]
- C. Firmino dos Santos, J.H. Aquino Rocha, Y. Vieira Póvoas, Use of infrared thermography for detection of moisture sources in internal walls of buildings, Ambiente Construído 19, 105–127 (2019) [CrossRef] [Google Scholar]
- P. Boudreaux, S. Pallin, G. Accawi, A. Desjarlais, R. Jackson, D. Senecal, A rule-based expert system applied to moisture durability of building envelopes, J. Build. Phys. 42, 416–437 (2018) [CrossRef] [Google Scholar]
- K. Gradeci, U. Berardi, B. Time, J. Köhler, Evaluating highly insulated walls to withstand biodterioration: a probabilistic-based methodology, Energy Build. 177, 112–124 (2018) [CrossRef] [Google Scholar]
- A.H. Wiberg, L. Georges, T.H. Dokka, M. Haase, B. Time, A.G. Lien, S. Mellegard, M. Maltha, A net zero emission concept analysis of a single-family house, Energy Build. 74, 101–110 (2014) [CrossRef] [Google Scholar]
- N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency, Energy Build. 59, 82–103 (2013) [CrossRef] [Google Scholar]
- L. Pastore, M. Andersen, Building energy certification versus user satisfaction with the indoor environment: findings from a multi-site post-occupancy evaluation (POE) in Switzerland, Build. Environ. 150, 60–74 (2019) [CrossRef] [Google Scholar]
- CTE, Technical Edification Code, in Spanish “Código Técnico de la Edificación” (2007) [Google Scholar]
- J. García-Sanz-Calcedo, F. López-Rodríguez, Analysis on the performance of a high efficiency administrative building in Spain, Int. J. Green Energy. 14, 55–62 (2017) [CrossRef] [Google Scholar]
- Royal Decree, of Basic procedure of energetic certification in buildings, in Spanish “Procedimiento básico para la certificación energética de edificios” (2013) [Google Scholar]
- EPBD, Implementation of the EPDB in Spain, 2010. Available at http://www.epbd-ca.org/Medias/Downloads/CA_Book_Implementing_the_EPBD_ Featuring_Country_Reports_2010.pdf (Accessed on 03/12/2019) [Google Scholar]
- Reference Document on Best Available Techniques for Energy Efficiency (2009) [Google Scholar]
- European Commission, the Market study for a voluntary common European Union certification scheme for the energy performance of non-residential buildings (2014) [Google Scholar]
- SIA 380-1, Thermal energy on buildings, in French, “L'energie thermique dans le bâtiment” (2001) [Google Scholar]
- P.D. Ball, M. Despeisse, S. Evans, R.M. Greenough, S.B. Hope, R. Kerrigan, A. Levers, P. Lunt, V. Murray, M.R. Oates, L. Shao, T. Waltniel, A.J. Wright, Factory Modelling: Combining Energy Modelling for Buildings and Production Systems, Institute of Energy and Sustainable Development (2012) [Google Scholar]
- H. Viot, A. Sempeya, M. Pauly, L. Mora, Comparison of different methods for calculating thermal bridges: application to wood-frame buildings, Build. Environ. 93, 339–348 (2015) [CrossRef] [Google Scholar]
- SIA 180, Protection thermique, protection contre l'humidité et climat intérieur dans les bâtiments, 2014 [Google Scholar]
- AEMET, (2017). Link: http://www.aemet.es/es/datos_abiertos/AEMET_OpenData [last view on 19/12/19] [Google Scholar]
- V.J. Fernández-Membrive, X.B. Lastra-Bravo, A. Tolón-Becerra, Cost-benefit analysis of changes in energy in building technology in Southeast Spain, Energy Build. 103, 29–37 (2015) [CrossRef] [Google Scholar]
- J.L. Paredes Ortiz, Comparative study of specific software for calculation of industrial urbanisms instalations, Application of a case study in Spanish “Estudio comparative del software específico apra el cálculo de instalaciones de urganismo industrial. Aplicación a un caso concreto” (2008) [Google Scholar]
- S. Benítez Martín, Study of applications of geothermal energy in Spain: practice case for cooling of a residential building in Spanish “Estudio de las aplicaciones de la energía geotérmica en España: caso práctico para climatización de una vivienda unifamiliar” (2011) [Google Scholar]
- F. Haldi, D. Robinson, The impact of occupants behavior on building energy demand, J. Build. Perform. Simul. 4, 323–338 (2011) [CrossRef] [Google Scholar]
- J. Li, Z.J. Yu, F. Haghighat, G. Zhang, Development and improvement of occupant behaviour models towards realistic building performance simulation: a review, Sustain. Cities Soc. 50, 101685 (2019) [CrossRef] [Google Scholar]
- I. Nardi, E. Lucchi, T. Rubeis, D. Ambrosini, Quantification of heat energy losses through the building envelope: a state-of-the-art analysis with critical and comprehensive review on infrared thermography, Build. Environ. 146, 190–205 (2018) [CrossRef] [Google Scholar]
- G. Lamé, Y. Leroy, B. Yannou, Ecodesign tools in the construction sector: Analyzing usage inadequacies with designers' needs, J. Clean. Prod. 148, 60–72 (2017) [CrossRef] [Google Scholar]
- S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: a review of building envelope components, Renew. Sustain. Energy Rev. 15, 3617–3631 (2011) [CrossRef] [Google Scholar]
- P. Bevilacqua, D. Mazzeo, N. Arcuri, Thermal inertia assessment of an experimental extensive green roof in summer conditions, Build. Environ. 131, 264–276 (2018) [CrossRef] [Google Scholar]
- E. Taveres-Cachat, S. Grynning, J. Thomsen, S. Selkowitz, Responsive building envelope concepts in zero emission neighborhoods and smart cities − a roadmap to implementation, Build. Environ. 149, 446–457 (2019) [CrossRef] [Google Scholar]
- M. Hall, A. Geissler, B. Burger, Two years of experience with a net zero energy balance − analysis of the Swiss MINERGIE-A, Energy Proc. 48, 1282–1291 (2014) [CrossRef] [Google Scholar]
- CYPE, Construction prices generator, in Spanish “Generador de precios de la construcción CYPE”, 2017. Available at: http://www.generadordeprecios.info/ (Accessed on 12/07/2017) [Google Scholar]
- G. Murano, D. Dirutigliano, V. Corrado, Improved procedure for the construction of a Typical Meteorological Year for assessing the energy need of a residential building, J. Build. Performance Simul. 13, 139–151 (2020) [CrossRef] [Google Scholar]
- A.M. Omer, Renewable building energy systems and passive human comfort solutions, Renew. Sustain. Energy Rev. 12, 1562–1587 (2008) [CrossRef] [Google Scholar]
- G. Evola, G. Margani, L. Marletta, Energy and cost evaluation of thermal bridge correction in Mediterranean climate, Energy Build. 43, 2385–2393 (2011) [CrossRef] [Google Scholar]
- M.T. Torres Rodríguez, L. Cristóbal Andrade, P.M. Bello Bugallo, J.J. Casares Long, Combining LCT tools for the optimization of an industrial process: material and energy flow analysis and best available techniques, J. Hazard. Mater. 192, 1705–1719 (2011) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.