Renew. Energy Environ. Sustain.
Volume 6, 2021
Achieving Zero Carbon Emission by 2030
Article Number 37
Number of page(s) 13
Published online 06 October 2021
  1. S. Nižetić, D. Čoko, A. Yadav et al., Water spray cooling technique applied on a photovoltaic panel: the performance response, Energy Convers. Manag. 108, 287–296 (2016) [CrossRef] [Google Scholar]
  2. F. Schiro, A. Benato, A. Stoppato et al., Improving photovoltaics efficiency by water cooling: Modelling and experimental approach, Energy 137, 798–810 (2017) [CrossRef] [Google Scholar]
  3. Z. Zapałowicz, W. Zeńczak, The possibility to improve energy efficiency through the application of PV installation including cooling modules, Renew. Sustain. Energy Rev. 143, 110964 (2021) [CrossRef] [Google Scholar]
  4. P. Atkin, M.M. Farid, Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminum fins, Solar Energy 114, 217–228 (2015) [CrossRef] [Google Scholar]
  5. H.M.S. Bahaidarah, A.A.B. Baloch, P. Gandhidasan, Uniform cooling of photovoltaic panels: a review, Renew. Sustain. Energy Rev. 57, 1520–1544 (2016) [CrossRef] [Google Scholar]
  6. H. Chen, X. Chen, S. Li, Comparative study on the performance improvement of photovoltaic panel with passive under natural ventilation, Int. J. Smart Grid Clean Energy 3, 374–379 (2014) [CrossRef] [Google Scholar]
  7. J. Siecker, K. Kusakana, B.P. Numbi, A review of solar photovoltaic systems cooling technologies, Renew. Sustain. Energy Rev. 79, 192–203 (2017) [CrossRef] [Google Scholar]
  8. P. Huen, W.A. Daoud, Advances in hybrid solar photovoltaic and thermoelectric generators, Renew. Sustain. Energy Rev. 72, 1295–1302 (2017) [CrossRef] [Google Scholar]
  9. H. Najafi, K.A. Woodbury, Optimization of a cooling system based on Peltier effect for photovoltaic cells, Solar Energy 91, 152–160 (2013) [CrossRef] [Google Scholar]
  10. M.C. Browne, B. Norton, S.J. McCormack, Phase change materials for photovoltaic thermal management, Renew. Sustain. Energy Rev. 47, 762–782 (2015) [CrossRef] [Google Scholar]
  11. M.C. Browne, B. Norton, S.J. McCormack, Heat retention of a photovoltaic/thermal collector with PCM, Solar Energy 133, 533–548 (2016) [CrossRef] [Google Scholar]
  12. S.S. Chandel, T. Agarwal, Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems, Renew. Sustain. Energy Rev. 73, 1342–1351 (2017) [CrossRef] [Google Scholar]
  13. A. Machniewicz, D. Knera, D. Heim, Effect of transition temperature on efficiency of PV/PCM panels, Energy Proc. 78, 1684–1689 (2015) [CrossRef] [Google Scholar]
  14. R. Stropnik, U. Stritih, Increasing the efficiency of PV panel with the use of PCM, Renew. Energy 97, 671–679 (2016) [CrossRef] [Google Scholar]
  15. M. Wolf, Performance analyses of combined heating and photovoltaic power systems for residences, Energy Convers. 16, 79–90 (1976) [CrossRef] [Google Scholar]
  16. E.C. Kern, M.C. Russel, Combined photovoltaic and thermal hybrid collector systems, in Photovoltaic Specialists Conference 13th, D.C. Washington, 1978; Conference Record. (A79-40881 17-44) New York, Inst. of Electrical and Electronics Engineers; 1153–1157 [Google Scholar]
  17. S.D. Hendrie, Evaluation of combined photovoltaic/thermal collectors, in Proceedings of the Silver Jubilee Congress, Atlanta, Ga (A80-3340 1 13–44), (Pergamon Press, 1979), Vol. 3, pp. 1865–1869 [Google Scholar]
  18. L.W. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/ thermal flat plate collectors, Solar Energy 22, 361–366 (1979) [CrossRef] [Google Scholar]
  19. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, Wiley, Hoboken, New Jersey, 2013 [CrossRef] [Google Scholar]
  20. P. Raghuraman, Analytical predictions of liquid and air photovoltaic/thermal, flat-plate collector performance, J. Solar Energy Eng. 103, 291–298 (1981) [CrossRef] [Google Scholar]
  21. C.H. Cox, P. Raghuraman, Design considerations for flat-plate-photovoltaic/thermal collectors, Solar Energy 35, 227–241 (1985) [CrossRef] [Google Scholar]
  22. A. Braunstein, A. Kornfeld, On the development of the solar photovoltaic and thermal (PVT) collector, IEEE Trans. Energy Convers. EC-1, 31–33 (1986) [CrossRef] [Google Scholar]
  23. B. Lalović, Z. Kiss, H. Weakliem, A hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells 19, 131–138 (1986) [CrossRef] [Google Scholar]
  24. D.J. Mbewe, H.C. Card, D.C. Card, A model of silicon solar cells for concentrator photovoltaic and photovoltaic/thermal system design, Solar Energy 35, 247–258 (1985) [CrossRef] [Google Scholar]
  25. A. Akbarzadeh, T. Wadowski, Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation, Appl. Thermal Eng. 16, 81–87 (1996) [CrossRef] [Google Scholar]
  26. Y. Tripanagnostopoulos, Photovoltaic/thermal solar collectors in comprehensive renewable energy, in Solar Thermal Systems, edited by S. Kalogirou (Elsevier, 2012), Vol. 3, pp. 255–300 [Google Scholar]
  27. K. Sopian, K.S. Yigit, H.T. Liu et al., Performance analysis of photovoltaic thermal air heaters, Energy Convers. Manag. 37, 1657–1670 (1996) [CrossRef] [Google Scholar]
  28. H.P. Garg, R.S. Adhikari, Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation, Renew. Energy 11, 363–385 (1997) [CrossRef] [Google Scholar]
  29. J.K. Tonui, Y. Tripanagnostopoulos, Improved PV/T solar collectors with heat extraction by forced or natural air circulation, Renew. Energy 32, 623–637 (2007) [CrossRef] [Google Scholar]
  30. Y. Tripanagnostopoulos, M. Souliotis, R. Battisti et al., Performance, cost and life-cycle assessment study of hybrid PVT/air solar systems, Progr. Photovolt. Res. Appl. 14, 65–76 (2006) [CrossRef] [Google Scholar]
  31. E. Sakellariou, P. Axaopoulos, An experimentally validated, transient model for sheet and tube PVT collector, Solar Energy 174, 709–718 (2018) [CrossRef] [Google Scholar]
  32. M.S. Hossain, A.K. Pandey et al., Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia, Appl. Thermal Eng. 153, 861–871 (2019) [CrossRef] [Google Scholar]
  33. M. Herrando, A. Ramos, I. Zabalza, C.N. Markides, A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors, Appl. Energy 235, 1583–1602 (2019) [CrossRef] [Google Scholar]
  34. Y. Zhang, Ch. Shen, Ch. Zhang, G. Lv, Ch. Sun, D. Chwieduk, The study of heat control on PVT modules with a new leaf-like heat exchanger, J. Renew. Sustain. Energy 13, 023703 (2021) [CrossRef] [Google Scholar]
  35. A. Mellor, D. Alonso, I. Guarracino, A. Ramos et al., Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors, Solar Energy 174, 386–398 (2018) [CrossRef] [Google Scholar]
  36. P. Gang, F. Huide, J. Jie et al., Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production, Energy Convers. Manag. 56, 8–21 (2012) [CrossRef] [Google Scholar]
  37. M. Herrando, C.N. Markides, K. Hellgardt, A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance, Appl. Energy 122, 288–309 (2014) [CrossRef] [Google Scholar]
  38. M. Herrando, C.N. Markides, Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: techno-economic considerations, Appl. Energy 161, 512–532 (2016) [CrossRef] [Google Scholar]
  39. Ch. Lamnatou, G. Notton, D. Chemisana, Ch. Cristofari, Storage systems for Building-Integrated Photovoltaic (BIPV) and Building-Integrated Photovoltaic/Thermal (BIPVT) installations: environmental profile and other aspects, Sci. Total Environ. 699, 134269 (2019) [CrossRef] [Google Scholar]
  40. D. Chwieduk, J. Bigorajski, Analysis of thermal and electrical efficiency of photovoltaic/ thermal − PV/T modules operating in moderate climate at microscale. HTRES2018- Heat Transfer Renewable Energy Sources 2018, E3S Web Conf. (2018) [Google Scholar]
  41. J. Bigorajski, D. Chwieduk, Analysis of a micro photovoltaic/thermal − PV/T system operation in moderate climate, Renew. Energy 137, 127–136 (2019) [CrossRef] [Google Scholar]
  42. J. Fan, S. Furbo, Thermal stratification in a hot water tank established by heat loss from the tank, Solar Energy 86, 3460–3469 (2012) [CrossRef] [Google Scholar]
  43. E. Fuentes, L. Arce, J. Salom, A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis, Renew. Sustain. Energy Rev. 81, 1530–1547 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.