Renew. Energy Environ. Sustain.
Volume 6, 2021
Achieving Zero Carbon Emission by 2030
Article Number 39
Number of page(s) 11
Published online 29 October 2021
  1. IEA, Renewables 2019. Analysis and forecast to 2024 (2019). Available at: (Accessed: 01 October 2021) [Google Scholar]
  2. REN21, Renewable energy pathways in road transport (2020). Available at: (Accessed: 01 October 2021) [Google Scholar]
  3. WHO, Air pollution (2021). Available at: (Accessed: 01 October 2021) [Google Scholar]
  4. REN21, Decarbonising the Transport Sector with Renewables Requires Urgent Action (2020). Available at: (Accessed: 01 September 2021) [Google Scholar]
  5. IEA, Energy Efficiency Indicators. Highlights. Statistical Report (2020). Available at: Highlights_2020_PDF.pdf (Accessed: 01 September 2021) [Google Scholar]
  6. European Environmental Agency, Final energy consumption in Europe by mode of transport (2021). Available at: (Accessed: 01 October 2021) [Google Scholar]
  7. European Environmental Agency, Progress of EU transport sector towards its environment and climate objectives (2021). Available at: (Accessed: 01 September 2021) [Google Scholar]
  8. European Commission, Statistical pocket book 2020 (2020). Available at: (Accessed: 01 September 2021) [Google Scholar]
  9. ACEA, Making the transition to zero-emission mobility. Enabling factors for alternatively-powered cars and vans in the European Union (2020). Available at: page=6 (Accessed: 01 October 2021) [Google Scholar]
  10. A. Ajanovic, R. Haas, On the future prospects and limits of biofuels in Brazil, the US and EU. Appl. Energy 135, 730–737 (2014) [CrossRef] [Google Scholar]
  11. K.S. Hoekman, Biofuels in the U.S. − challenges and opportunities, Renew. Energy 34, 14–22 (2009) [CrossRef] [Google Scholar]
  12. D. Chakraborty, J.H. Efthi, M. Khanom, I.M. Mahbubul, Prospective and challenging issues of biofuels, EDU J. Comput. Electr. Eng. 1, 4–10 (2020) [CrossRef] [Google Scholar]
  13. A.S. Nugroho, C. Thorns, I. Sankoff, S.H. Chew, S. Bista, Transitioning to sustainable use of biofuel in Australia, Renew. Energy Environ. Sustain. 2, 25 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  14. A. Demirbas, Political, economic and environmental impacts of biofuels: a review. Appl. Energy 86, S108–S117 (2009) [CrossRef] [Google Scholar]
  15. A. Ajanovic, Renewable fuels − a comparative assessment from economic, energetic and ecological point-of-view up to 2050 in EU-countries, Renew. Energy 60, 733–738 (2013) [CrossRef] [Google Scholar]
  16. A. Ajanovic, R. Haas, CO2-reduction potentials and costs of biomass-based alternative energy carriers in Austria, Energy 69, 120–131 (2014) [CrossRef] [Google Scholar]
  17. G.P. Hammond, S.M. Seth, Carbon and environmental footprinting of global biofuel production. Appl Energy 112, 547–559 (2013) [CrossRef] [Google Scholar]
  18. A. Ayres, Germany's water footprint of transport fuels. Appl. Energy 113, 1746–1751 (2014) [CrossRef] [Google Scholar]
  19. M. Wise, J. Dooley, P. Luckow, K. Calvin, P. Kyle, Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century, Appl. Energy 114, 763–773 (2014) [CrossRef] [Google Scholar]
  20. S. Srinivasan, The food vs. fuel debate: a nuanced view of incentive structures, Renew. Energy 34, 950–954 (2009) [CrossRef] [Google Scholar]
  21. J.O. Ahmed, The effect of biofuel crops cultivation on food prices stability and food security − a review, EurAsian J. BioSci. 14, 613–621 (2020) [Google Scholar]
  22. A. Ajanovic, Biofuels versus food production: does biofuels production increase food prices? Energy 36, 2070–2076 (2011) [CrossRef] [Google Scholar]
  23. Y. Ono, T. Haneda, T. Ikegami, A. Akisawa, Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles, Renew. Energy Environ. Sustain. 2, 11 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  24. R.H. Bezdek, The hydrogen economy and jobs of the future, Renew. Energy Environ. Sustain. 4, 1 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  25. A. Ajanovic, A. Glatt, R. Haas, Prospects and impediments for hydrogen fuel cell buses, Energy 235, 121340 (2021) [CrossRef] [Google Scholar]
  26. H. Zhanga, C.J.R. Sheppard, T.E. Lipman, T. Zeng, S.J. Moura, Charging infrastructure demands of shared-use autonomous electric vehicles in urban areas, Transportation Res. D 78, 102210 (2020) [CrossRef] [Google Scholar]
  27. A. Ajanovic, R. Haas, Dissemination of electric vehicles in urban areas: major factors for success, Energy 115, 1451–1458 (2016) [CrossRef] [Google Scholar]
  28. A. Ajanovic, M. Siebenhofer, R. Haas, Electric mobility in cities: the case of Vienna, Energies 14, 217 (2021) [CrossRef] [Google Scholar]
  29. S. Xiong, J. Ji, X. Ma, Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles, Waste Manag. 102, 579–586 (2020) [CrossRef] [Google Scholar]
  30. A. Ajanovic, R. Haas, Economic and environmental prospects for battery electric‐ and fuel cell vehicles: a review, Fuel Cells 19, 515–529 (2019) [CrossRef] [Google Scholar]
  31. A. Ajanovic, R. Haas, On the economics and the future prospects of battery electric vehicles, Greenhouse Gas Sci. Technol. 10, 1151–1164 (2020) [CrossRef] [Google Scholar]
  32. T. Steenberghen, E. Lopez, Overcoming barriers to the implementation of alternative fuels for road transport in Europe, J. Clean. Prod. 16, 577–590 (2008) [CrossRef] [Google Scholar]
  33. D.F. Dominković, I. Bačeković, A.S. Pedersen, G. Krajačić, The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition, Renew. Sustain. Energy Rev. 82, 1823–1838 (2018) [CrossRef] [Google Scholar]
  34. DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport, (Accessed: 01 September 2021) [Google Scholar]
  35. DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, (Accessed: 01 September 2021) [Google Scholar]
  36. European Parliament, EU biofuels policy, Briefing, January 2015, (Accessed: 01 September 2021) [Google Scholar]
  37. European Commission, Clean energy for all Europeans package, (Accessed: 01 September 2021) [Google Scholar]
  38. European Parliament, Legislative Train. REVIEW OF THE RENEWABLE ENERGY DIRECTIVE 2009/28/EC TO ADAPT IT TO THE EU 2030 CLIMATE AND ENERGY TARGETS, (Accessed: 01 September 2021) [Google Scholar]
  39. ICCT, Final recast renewable energy directive for 2021-2030 in the European Union (2018). Available at: (Accessed: 01 September 2021) [Google Scholar]
  40. European Commission, Reducing CO2 emissions from passenger cars − before 2020, (Accessed: 01 September 2021) [Google Scholar]
  41. European Commission, 2020 climate & energy package, (Accessed: 01 September 2021) [Google Scholar]
  42. European Commission, 2030 climate & energy framework, (Accessed: 01 September 2021) [Google Scholar]
  43. European Commission, White paper 2011, (Accessed: 01 September 2021) [Google Scholar]
  44. Statista, Share of energy from renewable sources used in transport in the European Union (EU-28) from 2004 to 2019 (2021), (Accessed: 01 September 2021) [Google Scholar]
  45. FAO, Global forest resources assessment 2010. FAO Forestry Paper 163. Food and Agricultural Organization of the Unit ed Nations, Rome, Italy, 2010, 378pp [Google Scholar]
  46. IFP, Biofuels Dashboard 2020 (2020). Available at: (Accessed: 01 September 2021) [Google Scholar]
  47. BP, Statistical Review of World Energy2020 | 69th edition (2020). Available at: (Accessed: 03 October 2021) [Google Scholar]
  48. Statista, Distribution of biofuel consumption in energetic content for transport in the European Union (EU-28) in 2019, by fuel type (2021). Available at: (Accessed: 03 October 2021) [Google Scholar]
  49. Statista, Biofuels production in selected countries in Europe in 2019 (2021). Available at: (Accessed: 03 October 2021) [Google Scholar]
  50. Frankfurt School-UNEP Collaborating Centre for Climate & Sustainable Energy Finance (FS-UNEP) and BloombergNEF. (2019). Global Trends in Renewable Energy Investment. Available at: 2019 (Accessed: 03 September 2021) [Google Scholar]
  51. IEA, Global Energy Review 2020 (2020). Available at: (Accessed: 03 September 2021) [Google Scholar]
  52. S. Nizetic, Impact of coronavirus (COVID-19) pandemic on air transport mobility, energy, and environment: a case study, Int. J. Energy Res. 44, 10953–10961 (2020) [CrossRef] [Google Scholar]
  53. IEA, Technology Roadmap. Biofuels for Transport (2011). Available at: (Accessed: 03 September 2021) [Google Scholar]
  54. M. Siebenhofer, A. Ajanovic, R. Haas, How policies affect the dissemination of electric passenger cars worldwide, Energies 14, 2093 (2021) [CrossRef] [Google Scholar]
  55. A. Ajanovic, R. Haas, M. Schrödl, On the historical development and future prospects of various types of electric mobility, Energies 14, 1070 (2021) [CrossRef] [Google Scholar]
  56. IEA, Global EV Outlook 2020 (2020). Available at: (Accessed: 03 September 2021) [Google Scholar]
  57. A. Ajanovic, R. Haas, Electric vehicles: solution or new problem? Environ. Dev. Sustain. 20, 7–22 (2018) [CrossRef] [Google Scholar]
  58. Eurostat, Electricity generation statistics (2021). Available at: (Accessed: 03 September 2021) [Google Scholar]
  59. G. Gardiner, The markets: Fuel cells and batteries (2020). Available at: (Accessed: 01 Octobre 2021) [Google Scholar]
  60. J. Ramsebner, R. Haas, A. Ajanovic, M. Wietschel, The sector coupling concept: a critical review, WIREs Energy Environ. 396 (2021) [Google Scholar]
  61. A. Hiesl, A. Ajanovic, R. Haas, On current and future economics of electricity storage, Greenhouse Gas Sci. Technol. 10, 1176–1192 (2020) [CrossRef] [Google Scholar]
  62. A. Ajanovic, The future of electric vehicles: prospects and impediments, WIREs Energy Environ. 4, 521–536 (2015) [CrossRef] [Google Scholar]
  63. A. Ajanovic, R. Haas, On the environmental benignity of electric vehicles, J. Sustain. Dev. Energy Water Environ. Syst. 7, 416–431 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.