Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 6, 2021
Article Number 23
Number of page(s) 10
DOI https://doi.org/10.1051/rees/2021023
Published online 26 July 2021
  1. N. Takahashi, S. Hashimoto, Y. Daiko, S. Honda, Y. Iwamoto, High-temperature shrinkage suppression in refractory ceramic fiber board using novel surface coating agent, Ceram. Int. 44, 16725–16731 (2018) [Google Scholar]
  2. S. Chalia, M.K. Bharti, P. Thakur, A. Thakur, S.N. Sridhara, An overview of ceramic materials and their composites in porous media burner applications, Ceram. Int. 47, 10426–10441 (2021) [CrossRef] [Google Scholar]
  3. S. Chinnusamy, V. Ramasamy, S. Venkatajalapathy, G.V. Kaliyannan, S.K. Palaniappan, Experimental investigation on the effect of ceramic coating on the wear resistance of Al6061 substrate, J. Mater. Res. Technol. 8, 6125–6133 (2019) [CrossRef] [Google Scholar]
  4. Q. Zhu et al., Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch, Ceram. Int. 47, 15533–15541 (2021) [CrossRef] [Google Scholar]
  5. P. Gehre, M.M. Mata, C.G. Aneziris, Synthesis and properties of Na2Al2Ti6O16-containing ceramic materials, J. Alloys Compd. 776, 116–122 (2019) [CrossRef] [Google Scholar]
  6. J. Zhang, T. Liu, Q. Huang, Z. Luo, A. Lu, L. Zhu, Preparation, properties characterization and structure formation mechanism of silica sand tailings-based ceramic materials, Mater. Chem. Phys. 255, 123611 (2020) [CrossRef] [Google Scholar]
  7. L. Hu, Y. Wang, Silicon carbonitride ceramic surface-modified nanoporous aluminum alloy by preceramic polysilazane precursor for surface strengthening, Mater. Sci. Eng. B 267, 115113 (2021) [CrossRef] [Google Scholar]
  8. S.M. Abbas, A. Elayaperumal, G. Suresh, A study on combustion and performance characteristics of ceramic coated (PSZ/Al2 O3) and uncoated piston − D.I. engine, Mater. Today Proc. 45, 1328–1333 (2021) [CrossRef] [Google Scholar]
  9. T. Gross et al., Potential of biogas production to reduce firewood consumption in remote high-elevation Himalayan communities in Nepal, Renew. Energy Environ. Sustain. 8, 1–6 (2017) [Google Scholar]
  10. Z. Gebreegziabher, A.D. Beyene, R. Bluffstone, P. Martinsson, A. Mekonnen, M.A. Toman, Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: evidence from controlled cooking tests in Ethiopia, Resour. Energy Econ. 52, 173–185 (2018) [CrossRef] [Google Scholar]
  11. K. Bakhsh, A. Sadiqa, M.A. Yasin, S. Haider, R. Ali, Exploring the nexus between households' choice of cooking fuels, sanitation facilities and access to information in Pakistan, J. Clean. Prod. 257, 120621 (2020) [CrossRef] [Google Scholar]
  12. D.K. Kidmo, K. Deli, B. Bogno, Status of renewable energy in Cameroon, Renew. Energy Environ. Sustain. 2, 1–11 (2021) [Google Scholar]
  13. R. Bar, J. Reinhard, A. Ehrensperger, B. Kiteme, T. Mkunda, W.S. Von Dach, The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support, Energy Policy 150, 112067 (2021) [CrossRef] [Google Scholar]
  14. E.D.S. Van Vliet et al., Current respiratory symptoms and risk factors in pregnant women cooking with biomass fuels in rural Ghana, Environ. Int. 124, 533–540 (2019) [CrossRef] [Google Scholar]
  15. R. Suresh, V.K. Singh, J.K. Malik, A. Datta, R.C. Pal, Evaluation of the performance of improved biomass cooking stoves with different solid biomass fuel types, Biomass Bioenergy 95, 27–34 (2016) [CrossRef] [Google Scholar]
  16. SEED, Man & Man Enterprise (2020). Hosted by adelphi research gGmbH https://www.seed.uno/enterprise-profiles/man-and-man-enterprise (accessed 2020-03-28) [Google Scholar]
  17. GACC, Delivering on SDG through cooking. Global Alliance for Clean Cooking (GACC), Washington D.C. (2020). https://sustainabledevelopment.un.org/content/documents/11416Global%20Allianc.pdf (accessed on 2020-03-28) [Google Scholar]
  18. J.C. Ahiekpor, Cookstove sector of Ghana. A baseline study and survey of stakeholders. Energy Commission and UNDP Ghana, (2014). https://www.undp.org/content/dam/ghana/docs/Doc/Susdev/UNDP_GH_SUSDEV_SE4ALL_Cookstove%20Sector%20of%20Ghana.pdf (accessed 2020-04-20) [Google Scholar]
  19. M. Bryden, D. Still, P. Scott, G. Hoffa, D. Ogle, R. Bailis, K. Goyer, Design Principles for Wood Burning Cook Stoves, Aprovecho Research Center, Shell Foundation, and United States Environmental Protection Agency, USA (2005) [Google Scholar]
  20. GACC, The Water Boiling Test Version 4.2.3. Cookstove Emissions and Efficiency in a Controlled Laboratory Setting. Global Alliance for Clean Cookstove (GACC), Washington, DC, USA (2014). Released 19 March 2014. https://cleancookstoves.org/binary-data/DOCUMENT/file/000/000/ 399-1.pdf (accessed 2020-03-20) [Google Scholar]
  21. GACC, Handbook for biomass cookstove research design and development. A practical guide for implementing recent advances (2014) https://www.safefuelandenergy.org/files/517-1.pdf (accessed 2020-03-23) [Google Scholar]
  22. GACC, The water boiling test 4.2.3 cookstoves emissions and efficiency in a controlled laboratory setting (Global Alliance for Clean Cookstoves (GACC), Washington DC, 2014) [Google Scholar]
  23. J. Jetter, Y. Zhao, K.R. Smith, B. Khan, P. Decarlo, M.D. Hays, U. States, Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards, Environ. Sci. Technol. 46, 10827–10834 (2012) [CrossRef] [Google Scholar]
  24. G. Boafo-Mensah, K. Ampomah-Benefo, M.A. Bentumah Animpong, W.O. Oduro, E.N. Kotey, K. Akufo-Kumi, G.N. Laryea, Thermal efficiency of charcoal fired cookstoves in Ghana, Glob. Adv. Res. J. Eng. Technol. Innov. 2, 102–110 (2013) [Google Scholar]
  25. G. Obeng, E. Mensah, G. Ashiagbor, O. Boahen, D. Sweeney, Watching the smoke rise up: Thermal efficiency, pollutant emissions and global warming impact of three biomass cookstoves in Ghana, Energies 10, 641 (2017) [CrossRef] [Google Scholar]
  26. N. MacCarty, D. Still, D. Ogle, Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance, Energy Sustain. Dev. 14, 161–171 (2010) [CrossRef] [Google Scholar]
  27. S.S. Saiyyadjilani, P.G. Tewari, R. Tapaskar, A.P. Madival, M. Gorawar, P.P. Revankar, Design of Improved Biomass Cook Stove for Domestic Utility, edited by P.M. Pawar et al., Springer International Publishing AG 2018, Techno-Societal (2016) [Google Scholar]
  28. A. Hugh, The Kenya Ceramic Jiko: A Manual for Stove Makers, Intermediate Technology Publications, UK (1991) [Google Scholar]
  29. UNBS, Energy efficiency stoves: household biomass stoves, performance requirements and test methods. Uganda National Bureau of Standards (UNBS), US 761 (2007) [Google Scholar]
  30. Lakeside Pottery, Clay the drying and firing process. Delaware, USA (2020). http://www.lakesidepottery.com/HTML%20Text/Tips/Clay%20drying%20and%20firing%20process.htm (accessed 2020-03-39) [Google Scholar]
  31. M. Hamburg, Basic Statistics: A Modern Approach, Harcourt Brace Jovanovich Publishers, Third Edition, Orlando, Florida, USA (1985) [Google Scholar]
  32. M. Kelly, R.A. Donnelly, The Humongous Book of Statistics Problems, Penguin Group, USA (2009) [Google Scholar]
  33. H.S. Drier, The Normal Distribution, Adapted from W.F. Coleman (1997). www.teacherlink.org/content/math/interactive/excelfiles/normaldist.xls, 2000 (accessed 2020-04-09) [Google Scholar]
  34. Energypedia, Charcoal cookstoves. GIZ HERA cooking compendium. A practical guidebook for implementers of cooking energy interventions (2018) https://energypedia.info/wiki/Charcoal_Cookstoves (accessed on 2020-04-21) [Google Scholar]
  35. Intermediate Technology, Stove and household energy. Boiling point; No 31, Issue 01-36, August (1998). Intermediate Technology Development Group (ITDG) and GTZ. [Google Scholar]
  36. A.K. Plappally, I. Yakub, L.C. Brown, W.O. Soboyejo, A.B.O. Soboyejo, Physical properties of porous clay ceramic-ware, J. Eng. Mater. Technol. 133, 031004–1 (2011) [CrossRef] [Google Scholar]
  37. C. Pesambili, F. Magessa, N. Mwakabuta, Sazawa Charcoal stove designed for efficient use of charcoal, in Int. Conf. on Industrial Design Engineering 2003 (USDM, Dar es Salam, 2003), pp. 17–18 [Google Scholar]
  38. H. Allan, Kenya Ceramic Jiko: A manual for stove makers, Intermediate Technology Publications, UK (1999) [Google Scholar]
  39. L. Clough, The improved cookstove sector in East Africa: experience from the Developing Energy Enterprise Programme (DEEP) (GVEP-Global Village Energy Partnership International, London, UK, 2012), Vol. 108 [Google Scholar]
  40. M. Mahajan, Statistical quality control, Dhanpat Rai & Co. (P) Ltd. Educational & Technical Publishers, New Delhi, India (1999) [Google Scholar]
  41. M.P. Kshirsagar, V.R. Kalamkar, A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design, Renew Sustain Energy Rev 30, 580–603 (2014) [CrossRef] [Google Scholar]
  42. J. Boyles, R.F. Orge, Performance of the continuous-type rice hull carbonizer as heat source in food product processing, OIDA Int. J. Sustain. Dev. 8, 25–34 (2015) [Google Scholar]
  43. E. Adkins, E. Tyler, J. Wang, D. Siriri, V. Modi, Field testing and survey evaluation of household biomass cookstoves in rural sub-Saharan Africa, Energy Sustain Dev 14, 172–185 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.