Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 6, 2021
Article Number 18
Number of page(s) 11
DOI https://doi.org/10.1051/rees/2021018
Published online 28 May 2021
  1. U.S. DOE, National Energy Technology Laboratory, in Fuel Cell Handbook (U.S. DOE, National Energy Technology Laboratory, 2004), 7th ed. [Google Scholar]
  2. A.V. Virkar, J.W. Kim, K. Mehta, K.Z. Fung, Low temperature, high performance, planar solid oxide fuel cells and stacks (1997) [Google Scholar]
  3. C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, J. Power Sources 171, 247‑260 (2007) [CrossRef] [Google Scholar]
  4. S. Revankar, P. Majumdar, in Fuel Cells Principles, Design and Analysis (Taylor & Francis Group. LLC, 2014), 1st edn. [Google Scholar]
  5. J. Wu, X. Liu, Recent development of SOFC metallic interconnect, J. Mater. Sci. Technol. 26, 293‑305 (2010) [CrossRef] [Google Scholar]
  6. S. (Supramaniam) Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer (2006) [Google Scholar]
  7. K.H.J. Buschow, Encyclopedia of Materials: Science and Technology, Elsevier (2001) [Google Scholar]
  8. M. Xu, T.S. Li, M. Yang, M. Andersson, I. Fransson, T. Larsson et al., Modeling of an anode supported solid oxide fuel cell focusing on thermal stresses, Int. J. Hydrogen Energy 1, 1–14 (2016) [Google Scholar]
  9. B. Ghorbani, K. Vijayaraghavan, 3D and simplified pseudo-2D modeling of single cell of a high temperature solid oxide fuel cell to be used for online control strategies, Int. J. Hydrogen Energy (2018) [Google Scholar]
  10. E. Achenbach, Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack, J. Power Sources 49, 333‑348 (1994) [CrossRef] [Google Scholar]
  11. Z. Xu, X. Zhang, G. Li, G. Xiao, J. Wang, Comparative performance investigation of different gas flow configurations for a planar solid oxide electrolyzer cell, Int. J. Hydrogen Energy (2017) [Google Scholar]
  12. G.L. Hawkes, J. O'Brien, C.M. Stoots, B. Hawkes, 3D CFD model of a multi-cell high-temperature electrolysis stack, Int. J. Hydrogen Energy 34, 4189‑4197 (2009) [Google Scholar]
  13. G.L. Hawkes, J.E. O'Brien, C.M. Stoots, J.S. Herring, M. Shahnam, CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy, Nucl. Technol. 158, 132‑144 (2007) [CrossRef] [Google Scholar]
  14. W. Bi, D. Chen, Z. Lin, A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks, Int. J. Hydrogen Energy 34, 3873‑3884 (2009) [Google Scholar]
  15. V. Danilov, M. Tade, A CFD-based model of a planar SOFC for anode flow field design, Int. J. Hydrogen Energy 34, 8998‑9006 (2009) [Google Scholar]
  16. M. Saied, K. Ahmed, M. Nemat-Alla, M. Ahmed, M. El-Sebaie, Performance study of solid oxide fuel cell with various flow field designs: numerical study, Int. J. Hydrogen Energy (2018) [Google Scholar]
  17. C. Huang, S. Shy, C. Lee, On flow uniformity in arious interconnects and its influence to cell performance of planar SOFC, J. Power Sources 183, 205–213 (2008) [CrossRef] [Google Scholar]
  18. Z. Lin, J.W. Stevenson, M.A. Khaleel, The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs, J. Power Sources 117, 92‑97 (2003) [CrossRef] [Google Scholar]
  19. Q. Shen, L. Sun, B. Wang, Numerical simulation of the effects of obstacles in gas flow fields of a solid oxide fuel cell, Int. J. Electrochem. Sci. 14, 1698–1712 (2019) [CrossRef] [Google Scholar]
  20. S.C. Singhal, K. Kendall, High temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications, Elsevier, New York (2003) [Google Scholar]
  21. S. Cordiner, M. Feola, V. Mulone, F. Romanelli, Analysis of a SOFC energy generation system fuelled with biomass reformate, Appl. Thermal Eng. 27, 738–747 (2007) [CrossRef] [Google Scholar]
  22. S. Campanari, P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry, J. Power Sources 132, 113‑126 (2004) [CrossRef] [Google Scholar]
  23. A. Luca, Experimental and numerical analysis of a radial flow solid oxide fuel cell, Int. J. Hydrogen Energy 32, 4559–4574 (2007) [CrossRef] [Google Scholar]
  24. D. Sanchez, On the effect of methane internal reforming modelling in solid oxide fuel cells, Int. J. Hydrogen Energy 33, 1834‑1844 (2008) [CrossRef] [Google Scholar]
  25. H. Mahcene, H.B. Moussa, H. Bouguettaia, D. Bechki, S. Babay, M. Salah Meftah, Study of species, temperature distributions and the solid oxide fuel cells performance in a 2-D model, Int. J. Hydrogen Energy 36, 4244‑4252 (2011) [CrossRef] [Google Scholar]
  26. M. Andresson, J. Yuan, Sundén, SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants, J. Power Sources 232, 42‑54 (2013) [Google Scholar]
  27. S. Yang, Electrochemical analysis of an anode-supported SOFC, Int. J. Electrochem. Sci. 8, 2330–2344 (2013) [Google Scholar]
  28. R.P. O'Hayre, Fuel cells for electrochemical energy conversion, EPJ Web Confer. 148, 00013 (2017) [CrossRef] [Google Scholar]
  29. Y. Sahli, H.B. Moussa, B. Zitouni, Optimization study of the produced electric power by SOFCs, Int. J. Hydrogen Energy (2018) [Google Scholar]
  30. Y. Wang, R. Zhan, Y. Qin, G. Zhang, Q. Du, K. Jiao, Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell, Int. J. Hydrogen Energy (2018) [Google Scholar]
  31. J. Zhang, L. Lei, D. Liu, F. Zhao, F. Chen, H. Wang, Numerical investigation of solid oxide electrolysis cells for hydrogen production applied with different continuity expressions, Energy Convers. Manag. 149, 646–659 (2017) [CrossRef] [Google Scholar]
  32. M. Ni, Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode, Int. J. Hydrogen Energy 36, 3153–3166 (2011) [CrossRef] [Google Scholar]
  33. M. Ni, 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell, Energy Convers. Manag. 51, 714–721 (2010) [CrossRef] [Google Scholar]
  34. M.E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs, Int. J. Hydrogen Energy (2018) [Google Scholar]
  35. H. Paradis, M. Andersson, B. Sundén, Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach, Heat Mass Transfer (2015) [Google Scholar]
  36. A. Chaisantikulwat, C. Diaz-Goano, E.S. Meadows, Dynamic modelling and control of planar anode-supported solid oxide fuel cell, Comput. Chem. Eng. 32, 2365‑2381 (2008) [CrossRef] [Google Scholar]
  37. Y.M. Barzi, A. Raoufi, N.M. Rasi, S. Davari, Three dimensional simulation of a counter-flow planar solid oxide fuel cell, ECS Trans. 35, 1021‑1033 (2011) [CrossRef] [Google Scholar]
  38. M. Saied et al., Investigations of solid oxide fuel cells with functionally graded electrodes for high performance and safe thermal stress, Int. J. Hydrogen Energy 42, 15887‑15902 (2017) [CrossRef] [Google Scholar]
  39. A. Arvay et al., Convergence criteria establishment for 3D simulation of proton exchange membrane fuel cell, Int. J. Hydrogen Energy 37, 2482–2489 (2011) [CrossRef] [Google Scholar]
  40. M. Chyu, Numerical modeling of transport phenomena in solid oxide fuel cells, In 2005 Taiwan Solid Oxide Fuel Cell Symposium (2005) [Google Scholar]
  41. G. Anandakumar, N. Li, A. Verma, P. Singh, J.H. Kim, Thermal stress and probability of failure analyses of functionally graded solid oxide fuel cells, J. Power Sources 195, 6659‑6670 (2010) [CrossRef] [Google Scholar]
  42. P. Costamagna, K. Honegger, Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization, J. Electrochem. Soc. 145, 3995–4007 (1998) [CrossRef] [Google Scholar]
  43. J.R. Ferguson, J.M. Fiard, R. Herbin, Three-dimensional numerical simulation for various geometries of solid oxide fuel cells, J. Power Sources 58, 109–122 (1996) [CrossRef] [Google Scholar]
  44. Z. Qu, P. Aravind, S. Boksteen, N. Dekker, A. Janssen, N. Woudstra et al., Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC, Int. J. Hydrogen Energy 36, 10209‑10220 (2011) [CrossRef] [Google Scholar]
  45. M.M. Hussain, X. Li, I. Dincer, Mathematical modeling of planar solid oxide fuel cells, J. Power Sources 161, 1012‑1022 (2006) [Google Scholar]
  46. K. Keegan, M. Khaleel et al., Analysis of a planar solid oxide fuel cell based automotive auxiliary power unit, SAE Technical Paper Series 2002–01-0413 (2002) [Google Scholar]
  47. B. Zitouni, H. Ben-Moussa et al., Temperature field, H2 and H2O mass transfer in SOFC single cell: electrode and electrolyte thickness effects, Int. J. Hydrogen Energy 34, 5032‑5092 (2009) [CrossRef] [Google Scholar]
  48. B. Zitouni, G.M. Andreadis et al., Two-dimensional numerical study of temperature field in an anode supported planar SOFC: effect of the chemical reaction, Int. J. Hydrogen Energy 36, 4228‑4235 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.