Open Access
Renew. Energy Environ. Sustain.
Volume 5, 2020
Article Number 6
Number of page(s) 13
Published online 03 April 2020
  1. T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen, Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems,’ Renew. Sustain. Energy Rev. 92, 834–847 (2018) [CrossRef] [Google Scholar]
  2. B.V. Mathiesen, H. Lund, K. Karlsson, 100% Renewable energy systems, climate mitigation and economic growth, Appl. Energy 88, 488–501 (2011) [CrossRef] [Google Scholar]
  3. B. Elliston, I. MacGill, M. Diesendorf, Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market, Renew. Energy 66, 196–204 (2014) [CrossRef] [Google Scholar]
  4. B. Lu, A. Blakers, M. Stocks, 90-100% renewable electricity for the South West Interconnected System of Western Australia, Energy 122, 663–674 (2017) [CrossRef] [Google Scholar]
  5. A. Sadiqa, A. Gulagi, C. Breyer, Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by2050, Energy 147, 518–533 (2018) [CrossRef] [Google Scholar]
  6. A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer, Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by2030, Renew. Sustain. Energy Rev. 105, 187–205 (2019) [CrossRef] [Google Scholar]
  7. M.Z. Jacobson, M.A. Delucchi, Z.A.F. Bauer, S.C. Goodman, W.E. Chapman, M.A. Cameron, C. Bozonnat, L. Chobadi, H.A. Clonts, P. Enevoldsen, J.R. Erwin, S.N. Fobi, O.K. Goldstrom, E.M. Hennessy, J. Liu, J. Lo, C.B. Meyer, S.B. Morris, K.R. Moy, P.L. O'Neill, I. Petkov, S. Redfern, R. Schucker, M.A. Sontag, J. Wang, E. Weiner, A.S. Yachanin, 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world, Joule 1, 108–121 (2017) [CrossRef] [Google Scholar]
  8. M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen, Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes, Renew. Energy 123, 236–248 (2018) [CrossRef] [Google Scholar]
  9. W. Zappa, M. Junginger, M. van den Broek, Is a 100% renewable European power system feasible by 2050? Appl. Energy 233–234, 1027–1050 (2019) [CrossRef] [Google Scholar]
  10. D. Connolly, H. Lund, B.V. Mathiesen, Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union, Renew. Sustain. Energy Rev. 60, 1634–1653 (2016) [CrossRef] [Google Scholar]
  11. J. Riesz, B. Elliston, P. Vithayasrichareon, I. MacGill, 100% Renewables in Australia: A Research Summary, Centre for Energy and Environmental Markets, University of NSW, Sydney, 2016 [Google Scholar]
  12. B. Rose, S. Gates, S. Begg, L. Bunn, C. Carter, S. Jerejian, A. King, I. Porter, Clean Electricity Western Australia 2030. Modelling Renewable Energy Scenarios for the South West Integrated System, Sustainable Energy Now (SEN), Western Australia, 2016 [Google Scholar]
  13. J. Cochran, T. Mai, M. Bazilian, Meta-analysis of high penetration renewable energy scenarios, Renew. Sustain. Energy Rev. 29, 246–253 (2014) [CrossRef] [Google Scholar]
  14. W. Deason, Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost, Renew. Sustain. Energy Rev. 82, 3168–3178 (2018) [CrossRef] [Google Scholar]
  15. J.E. Trancik, J. Jean, G. Kavlak, M.M. Klemun, M.R. Edwards, J. McNerney, M. Miotti, P.R. Brown, J.M. Mueller, Z.A. Needell, Technology improvement and emissions reductions as mutually reinforcing efforts: Observations from the global development of solar and wind energy (MIT, 2015) [Google Scholar]
  16. C.L. Benson, C.L. Magee, On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries, Renew. Energy. 68, 745–751 (2014) [CrossRef] [Google Scholar]
  17. Lazard, Lazard's Levelized Cost of Energy Analysis—Version 11.0, 2017 [Google Scholar]
  18. Lazard, Lazard's Levelized Cost of Energy Analysis—Version 12.0, 2018 [Google Scholar]
  19. J.P. Hansen, P.A. Narbel, D.L. Aksnes, Limits to growth in the renewable energy sector, Renew. Sustain. Energy Rev. 70, 769–774 (2017) [CrossRef] [Google Scholar]
  20. K. Baldwin, A. Blakers, M. Stocks, Australia's renewable energy industry is delivering rapid and deep emissions cuts, The Energy Change Institute, Australian National University, 2018. [Google Scholar]
  21. P. Denholm, M. Hand, Grid flexibility and storage required to achieve very high penetration of variable renewable electricity, Energy Policy 39, 1817–1830 (2011) [CrossRef] [Google Scholar]
  22. B. Elliston, J. Riesz, I. MacGill, What cost for more renewables? The incremental cost of renewable generation. An Australian National Electricity Market case study, Renew. Energy 95, 127–129 (2016) [CrossRef] [Google Scholar]
  23. M. Kemp, J. Wexler, eds., Zero carbon Britain 2030: a new energy strategy: the second report of the zero carbon Britain project (Centre for Alternative Technology, Wales, 2010) [Google Scholar]
  24. H. Lund, B.V. Mathiesen, Energy system analysis of 100% renewable energy systems—The case of Denmark in years2030 and 2050, Energy 34, 524–531 (2009) [CrossRef] [Google Scholar]
  25. D. Connolly, H. Lund, B.V. Mathiesen, M. Leahy, The first step towards a 100% renewable energy-system for Ireland, Appl. Energy 88, 502–507 (2011) [CrossRef] [Google Scholar]
  26. G. Pleßmann, M. Erdmann, M. Hlusiak, C. Breyer, Global Energy Storage Demand for a 100% Renewable Electricity Supply, Energy Proc. 46, 22–31 (2014) [CrossRef] [Google Scholar]
  27. A. Ansar, B. Flyvbjerg, A. Budzier, D. Lunn, Should we build more large dams? The actual costs of hydropower megaproject development, Energy Policy 69, 43–56 (2014) [CrossRef] [Google Scholar]
  28. I. Kougias, S. Szabó, Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?, Energy 140, 318–329 (2017) [CrossRef] [Google Scholar]
  29. B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles, Nat. Clim. Change 5, 329–332 (2015) [CrossRef] [Google Scholar]
  30. O. Schmidt, A. Hawkes, A. Gambhir, I. Staffell, The future cost of electrical energy storage based on experience rates, Nat. Energy 2, 17110 (2017) [CrossRef] [Google Scholar]
  31. R. Kempener, E. Borden, Batter*+y Storage for Renewables: Market Status and Technology Outlook, International Renewable Energy Agency (IRENA), 2015 [Google Scholar]
  32. AEMO, 2017 Electricity statement of opportunities, Australian Energy Market Operator, Western Australia, 2017. [Google Scholar]
  33. D. Laslett, C. Creagh, P. Jennings, A method for generating synthetic hourly solar radiation data for any location in the south west of Western Australia, in a world wide web page, Renew. Energy 68, 87–102 (2014) [CrossRef] [Google Scholar]
  34. D. Laslett, C. Creagh, P. Jennings, A simple hourly wind power simulation for the South-West region of Western Australia using MERRA data, Renew. Energy 96, 1003–1014 (2016) [CrossRef] [Google Scholar]
  35. D. Laslett, C. Carter, C. Creagh, P. Jennings, A large-scale renewable electricity supply system by 2030: solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia., Renew. Energy (submitted) (2017) [Google Scholar]
  36. A. Burnham, J. Han, C.E. Clark, M. Wang, J.B. Dunn, I. Palou-Rivera, Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum, Environ. Sci. Technol. 46, 619–627 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  37. C. Good, T. Kristjansdottír, A. Houlihan Wiberg, L. Georges, A.G. Hestnes, Influence of PV technology and system design on the emission balance of a net zero emission building concept, Sol. Energy 130, 89–100 (2016) [CrossRef] [Google Scholar]
  38. I. Kumar, W.E. Tyner, K.C. Sinha, Input-output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States, Energy Policy 89, 294–301 (2016) [CrossRef] [Google Scholar]
  39. D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7, 19–29 (2014) [CrossRef] [Google Scholar]
  40. O. Kelp, G. Dundas, Electricity Sector Emissions. Modelling of the Australian Electricity Generation Sector, ACIL ALLEN CONSULTIN G, Brisbane, 2013 [Google Scholar]
  41. A. Nicholls, R. Sharma, T.K. Saha, Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia, Appl. Energy 159, 252–264 (2015) [CrossRef] [Google Scholar]
  42. I.M. Hoffman, C.A. Goldman, G. Rybka, G. Leventis, L. Schwartz, A.H. Sanstad, S. Schiller, Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs, Energy Policy 104, 1–12 (2017) [CrossRef] [Google Scholar]
  43. EPRI, The Australian Power Generation Technology Report, Electric Power Re search Institute, Australia, 2015 [Google Scholar]
  44. R. Turconi, C.G. Simonsen, I.P. Byriel, T. Astrup, Life cycle assessment of the Danish electricity distribution network, Int. J. Life Cycle Assess. 19, 100–108 (2014) [CrossRef] [Google Scholar]
  45. I.B. Hauan, Life Cycle Assessment of Electricity Transmission and Distribution, Institutt for energi-og prosessteknikk, 2014. (accessed March 6, 2017) [Google Scholar]
  46. NREL, NREL: Energy Analysis − Energy Technology Cost and Performance Data, (2013). (accessed February 28, 2017) [Google Scholar]
  47. T. Krieg, Transmission Asset Cost Benchmarking. Report summarising SKM benchmarking of selected asset cost estimates to assist in verifying cost models. V0.4, Sinclair Knight Merz, Western Power, Armadale, Western Australia, 2008. (accessed January 17, 2017) [Google Scholar]
  48. ERA, Draft Determination on the New Facilities Investment Test Application for the Connection of Collgar Windfarm, Economic Regulation Authority, Perth, 2011. (accessed January 17, 2017) [Google Scholar]
  49. CEC, Guide to installing solar PV for business and industry, Clean Energy Council, Melbourne, 2014. (accessed March 20, 2017) [Google Scholar]
  50. M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.A. Frew, Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes, Proc. Natl. Acad. Sci. 112, 15060–15065 (2015) [Google Scholar]
  51. S. Faulstich, B. Hahn, P.J. Tavner, Wind turbine downtime and its importance for offshore deployment, Wind Energy 14, 327–337 (2011) [CrossRef] [Google Scholar]
  52. M. Dubarry, A. Devie, K. Stein, M. Tun, M. Matsuura, R. Rocheleau, Battery energy storage system battery durability and reliability under electric utility grid operations: analysis of 3 years of real usage, J. Power Sources 338, 65–73 (2017) [CrossRef] [Google Scholar]
  53. J. Cochran, D. Lew, N. Kumarb, Flexible Coal (2013). (accessed March 15, 2017) [Google Scholar]
  54. J.P. Gouveia, L. Dias, I. Martins, J. Seixas, Effects of renewables penetration on the security of Portuguese electricity supply, Appl. Energy. 123, 438–447 (2014) [CrossRef] [Google Scholar]
  55. A. Blakers, B. Lu, M. Stocks, 100% renewable electricity in Australia, (2017). (accessed March 15, 2017) [Google Scholar]
  56. K. Field, UBS Analyst Dubs Model 3 Unprofitable, Tesla Responds With Battery Pricing, CleanTechnica (2016). (accessed March 18, 2017) [Google Scholar]
  57. Jacobs, NSW Energy efficiency programs Cost benefit analysis, Jacobs Group (Australia) Pty Limited, Melbourne, 2014 [Google Scholar]
  58. T.S. Brinsmead, P. Graham, J. Hayward, E.L. Ratnam, L. Reedman, Future energy storage trends: an assessment of the economic viability, potential uptake and impacts of electrical energy storage on the NEM 2015-2035, CSIRO, Australia, 2015 [Google Scholar]
  59. J. Lu, S. Hyland, Energy Price Limits for the Wholesale Electricity Market in Western Australia. Final draft report 1.4, Jacobs, Melbourne, 2016 [Google Scholar]
  60. B.S. Howard, N.E. Hamilton, M. Diesendorf, T. Wiedmann, Modeling the carbon budget of the Australian electricity sector's transition to renewable energy, Renew. Energy 125, 712–728 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.