Open Access
Renew. Energy Environ. Sustain.
Volume 4, 2019
Article Number 3
Number of page(s) 8
Published online 08 February 2019
  1. J.P. Barnett, Life Cycle Assessment (LCA) of Liquefied Natural Gas (LNG) and its environmental impact as a low carbon energy source, in Environmental Engineering (University of Southern Queensland, Queensland, 2010), p. 55 [Google Scholar]
  2. T. Clark, R. Hynes, P. Mariotti, Greenhouse Gas emissions study of Australian CSG to LNG (WorleyParsons, Australia, 2011) [Google Scholar]
  3. R. Michalski, A. Ficek, Environmental pollution by chemical substances used in the shale gas extraction—a review, Desalin. Water Treat. 57, 1336 (2016) [CrossRef] [Google Scholar]
  4. Parliament WA, Inquiry into the Implications for Western Australia of Hydraulic Fracturing for Unconventional Gas (2013) [Google Scholar]
  5. P.E. Hardisty, T.S. Clark, R.G. Hynes, Life cycle greenhouse gas emissions from electricity generation: a comparative analysis of Australian energy sources, Energies 5, 872 (2012) [CrossRef] [Google Scholar]
  6. P. Cook et al., Engineering Energy: Unconventional Gas Production (Australian Council of Learned Academies (ACOLA), Australia, 2013) [Google Scholar]
  7. S. Jenner, A.J. Lamadrid, Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States, Energy Policy 53, 442 (2013) [CrossRef] [Google Scholar]
  8. C. Tagliaferri et al., Shale gas: a life-cycle perspective for UK production, Int. J. Life Cycle Assess. 1 (2016) [Google Scholar]
  9. N. ABC, Victorian unconventional gas exploration ban to end fracking and CSG extraction, in ABC (ABC, Perth, WA, 2016) [Google Scholar]
  10. Australian Government, Australia’s Liquefied Natural Gas (LNG) exports, 2003-04 to 2013-14 and beyond (2015). Available from: (accessed 25 July, 2016) [Google Scholar]
  11. P. Cook et al., Engineering Energy: Unconventional Gas Production (2013) [Google Scholar]
  12. CSIRO, What is hydraulic fracturing (2015). Available from: (accessed 7 October, 2016) [Google Scholar]
  13. Energy Information Administration, Technically Recoverable Shale Oil and Shale Gas Resources: Australia (USEPA, 2015), p. 57 [Google Scholar]
  14. EIA, Annual Energy Outlook 2016 (Independent statistics and analysis, 2016). Available from: (accessed 21 September, 2016) [Google Scholar]
  15. R. Howarth, R. Santoro, A. Ingraffea, Methane and the greenhouse-gas footprint of natural gas from shale formations, Clim. Change 106, 679 (2011) [CrossRef] [Google Scholar]
  16. R.W. Howarth, R. Santoro, A. Ingraffea, Venting and leaking of methane from shale gas development: response to Cathles et al., Clim. Change 113, 537 (2012) [CrossRef] [Google Scholar]
  17. M. Binnion, How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful, Mar. Pet. Geol. 31, 3 (2012) [CrossRef] [Google Scholar]
  18. S. Bista, P. Jennings, M. Anda, Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia, Renew. Energy Environ. Sustain. 2, 45 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  19. I.D. Posen, P. Jaramillo, W.M. Griffin, Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families, Environ. Sci. Technol. 50, 2846 (2016) [CrossRef] [Google Scholar]
  20. Z.P. Bažant et al., Why fracking works, J. Appl. Mech. 81, (2014). DOI: 101010-101010-10 [Google Scholar]
  21. Geoscience News and Information, What is frac sand (2016), 2/2017 [Google Scholar]
  22. EPA, Hydraulic Fracturing of Gas Reserves (G.o.W. Australia, 2011), p. 4 [Google Scholar]
  23. G.A. Heath et al., Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation, Proc. Natl. Acad. Sci. 111, E3167 (2014) [CrossRef] [Google Scholar]
  24. ACOLA, Potential Geological Risks Associated with Shale Gas Production in Australia (2013), p. 50 [Google Scholar]
  25. USEPA, Greenhouse gas emissions reporting from the petroleum and natural gas industry (2010). Available from: (accessed 2018) [Google Scholar]
  26. A. Burnham et al., Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum, Environ. Sci. Technol. 46, 619 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  27. L.M. Cathles et al., A commentary on “The greenhouse-gas footprint of natural gas in shale formations'' by R.W. Howarth, R. Santoro, and Anthony Ingraffea, Clim. Change 113, 525 (2012) [CrossRef] [Google Scholar]
  28. G. Pétron et al., Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res.: Atm. 117 (2012) [Google Scholar]
  29. H. Nathan et al., The greenhouse impact of unconventional gas for electricity generation, Environ. Res. Lett. 6, 044008 (2011) [CrossRef] [Google Scholar]
  30. T. Stephenson, J.E. Valle, X. Riera-Palou, Modeling the relative GHG emissions of conventional and shale gas production, Environ. Sci. Technol. 45, 10757 (2011) [CrossRef] [Google Scholar]
  31. R. Glancy, Quantifying Fugitive Emission Factors from Unconventional Natural Gas Production Using IPCC Methodologies (Institute for Global Environmental Strategies, Japan, 2013), p. 45 [Google Scholar]
  32. NETL, Life Cycle Greenhouse Gas Inventory of Natural Gas Extraction, Delivery and Electricity Production (US Department of Energy, 2011) [Google Scholar]
  33. NREL, US Life Cycle Inventory Databases (2017). Available from: [Google Scholar]
  34. C. Munnings, A.J. Krupnick, Comparing Policies to Reduce Methane Emissions in the Natural Gas Sector (2017). Available from: (accessed 10 July, 2017) [Google Scholar]
  35. A. King, Submission Concerning the Impacts of Hydrolic Fracturing in Western Australia (Sustainable Energy Now, West Perth, 2013), pp. 2–3 [Google Scholar]
  36. D.o.t.E.a.E. Australian Government, Australian Greenhouse Emissions Information System (2016). Available from: [Google Scholar]
  37. K. Hayhoe et al., Substitution of natural gas for coal: climatic effects of utility sector emissions, Clim. Change 54, 107 (2002) [CrossRef] [Google Scholar]
  38. E.G. Hertwich et al., Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies, Proc. Natl. Acad. Sci. 112, 6277 (2015) [CrossRef] [Google Scholar]
  39. D. Nugent, B.K. Sovacool, Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey, Energy Policy 65, 229 (2014) [CrossRef] [Google Scholar]
  40. IPCC, Climate change 2007, in Synthesis Report (WMO & UNEP, Geneva, Switzerland, 2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.