Open Access
Issue |
Renew. Energy Environ. Sustain.
Volume 3, 2018
Sustainable energy systems for the future
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/rees/2018003 | |
Published online | 29 May 2018 |
- U.S. Energy Information Administration, International Energy Outlook 2016 (2016), www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf. [Google Scholar]
- L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the residential sector: a review of modeling techniques, Renew. Sustain. Energy Rev. 13, 1819–1835 (2009) [CrossRef] [Google Scholar]
- M. Kavgic, et al., A review of bottom-up building stock models for energy consumption in the residential sector, Build. Environ. 45, 1683–1697 (2010), http://dx.doi.org/10.1016/j.buildenv.2010.01.021. [CrossRef] [Google Scholar]
- M. Lawless, M. Lawless, K. Tsuji, Global Market for Smart Electricity Meters: Government Policies Driving Strong Growth (2014), https://www.usitc.gov/publications/332/id-037smart_meters_final.pdf. [Google Scholar]
- M. Rossi, D. Brunelli, Electricity demand forecasting of single residential units, in 2013 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, EESMS 2013 − Proceedings, (Dii) (2013) [Google Scholar]
- R.E. Edwards, J. New, L.E. Parker, Predicting future hourly residential electrical consumption: a machine learning case study, Energy Build. 49, 591–603 (2012) [CrossRef] [Google Scholar]
- K.M. Ahmed, M.A. Al Amin, M.T. Rahman, Application of short term energy consumption forecasting for household energy management system, in IEEE, Green Energy and Technology (ICGET) (2015) [Google Scholar]
- F. Rodrigues, C. Cardeira, J.M.F. Calado, The daily and hourly energy consumption and load forecasting using artificial neural network method: a case study using a set of 93 households in Portugal, Energy Procedia 62, 220–229 (2014), http://www.sciencedirect.com/science/article/pii/S1876610214034146 [CrossRef] [Google Scholar]
- M. Ghofrani, et al., Smart meter based short-term load forecasting for residential customers, in NAPS 2011-43rd North American Power Symposium (2011) pp. 13–17 [Google Scholar]
- K. Gajowniczek, T. Ząbkowski, Short term electricity forecasting using individual smart meter data. Procedia Comput. Sci. 35, 589–597 (2014), http://www.sciencedirect.com/science/article/pii/S1877050914011053 [CrossRef] [Google Scholar]
- R.P. Singh, P.X. Gao, D.J. Lizotte, On hourly home peak load prediction, in 2012 IEEE 3rd International Conference on Smart Grid Communications, SmartGridComm 2012 (2012) pp. 163–166. [CrossRef] [Google Scholar]
- M.A. Hall, Correlation-based Feature Selection for Machine Learning (The University of Waikato, 1999), http://www.cs.waikato.ac.nz/∼mhall/thesis.pdf [Google Scholar]
- MathWorks, MATLAB 2016b, https://au.mathworks.com/products/matlab.html [Google Scholar]
- A. NG, Neural Networks Learning in Machine Learning (Stanford University, 2015), https://www.coursera.org/learn/machine-learning/lecture/Wh6s3/putting-it-together [Google Scholar]
- A.S. Ahmad, et al., A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renew. Sustain. Energy Rev. 33, 102–109 (2014), http://dx.doi.org/10.1016/j.rser.2014.01.069 [Google Scholar]
- M.H. Beale, M.T. Hagan, H.B. Demuth, Neural Network Toolbox User’s Guide (MathWorks, 2015), pp. 2–3, http://medcontent.metapress.com/index/A65RM03P4874243N.pdf%5Cnhttp://onlinelibrary.wiley.com/doi/10.1002/0471221546.fmatter_indsub/summary [Google Scholar]
- C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20, 273–297 (1995) [Google Scholar]
- G. James, et al., An Introduction to Statistical Learning (2006), http://books.google.com/books?id=9tv0taI8l6YC. [Google Scholar]
- F. Javed, et al., Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting, Appl. Energy 96, 150–160 (2012), http://dx.doi.org/10.1016/j.apenergy.2012.02.027. [CrossRef] [Google Scholar]
- A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14, 199–222 (2004) [CrossRef] [Google Scholar]
- J.A.K. Suykens, et al., Least squares support vector machines (2002), Vol. xiv, p. 294 [Google Scholar]
- K. De Brabanter, et al., 2011. LS-SVMlab Toolbox User’s Guide, http://www.esat.kuleuven.be/sista/lssvmlab/ [Google Scholar]
- K. De Brabanter, Least Squares Support Vector Regression with Applications to Large-Scale Data: a Statistical Approach (2011) [Google Scholar]
- F. Mcloughlin, Characterising Domestic Electricity Demand for Customer Load Profile Segmentation (2013), p. 274 [Google Scholar]
- L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (John Wiley & Sons, Inc., 1990) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.