Open Access
Renew. Energy Environ. Sustain.
Volume 3, 2018
Article Number 4
Number of page(s) 12
Published online 05 September 2018
  1. Z. Ming, L. Ximein, L. Na, X. Song, Overall review of renewable energy tariff policy in China: evolution, implementation, problems and countermeasures, Renew. Sustain. Energy Rev. 25, 260–271 (2013) [CrossRef] [Google Scholar]
  2. S. Khurana, A. Kumar, Small hydropower − a review, Int. J. Eng. Sci. Metall. 1, 278–282 (2011) [Google Scholar]
  3. O. Sahin, R.A. Stewart, D. Giurco, M.G. Porter, Renewable hydropower generation as a co-benefit of balanced urban water portfolio management and flood risk mitigation, Renew. Sustain. Energy Rev. 68, 1076–1087 (2017) [CrossRef] [Google Scholar]
  4. REN21, Renewable Energy Policy Network for the 21st Century, Renewables 2015, in Global Status Report: Annual Reporting on Renewables (ten years of excellence) (Paris, France, 2016) [Google Scholar]
  5. URT, United Republic of Tanzania, Ministry of Energy and Minerals (National Energy Policy, Dar es Salaam, Tanzania, 2015) [Google Scholar]
  6. ADB, African Development Bank, Renewable Energy in Africa: Tanzania Country Profile (Ivory Coast, 2015) [Google Scholar]
  7. URT, United Republic of Tanzania, Power System Master Plan 2012 Update (Dar es Salaam, Tanzania, 2013) [Google Scholar]
  8. TANESCO, Tanzania Electric Supply Company, 2018, [Google Scholar]
  9. M.L. Kolhe, K.M. Iromi-Udumbara-Ranaweera, A.G.B. Sisara-Gunawardana, Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka, Sustain. Energy Technol. Assess. 11, 53–64 (2015) [Google Scholar]
  10. IEA, International Energy Agency, IEA energy statistics, electricity generation by fuel in Tanzania, 2017, [Google Scholar]
  11. IJHD, International Journal on Hydropower & Dams, World Atlas & Industry Guide (Wallington, Surrey, UK, 2010) [Google Scholar]
  12. E. Panos, H. Turton, M. Densing, K. Volkart, Powering the growth of Sub-Saharan Africa: the jazz and symphony scenarios of World Energy Council, Energy Sustain. Dev. 26, 14–33 (2015) [CrossRef] [Google Scholar]
  13. J. Xu, T. Ni, Integrated technological paradigm-based soft paths towards sustainable development of small hydropower, Renew. Sustain. Energy Rev. 70, 623–634 (2017) [CrossRef] [Google Scholar]
  14. C.S. Kaunda, C.Z. Kimambo, P.M. Ndomba, The development of microhydro for rural energy supply in Tanzania, Hydropower Dams 6, 60–66 (2012a) [Google Scholar]
  15. UNIDO-GEF, United Republic of Tanzania, Mini-grids Based on Small Hydropower Sources to Augment Rural Electrification in Tanzania (Vienna, 2015) [Google Scholar]
  16. REA, Rural Energy Agency, Annual Report 2014/2015, Tanzania, 2015 [Google Scholar]
  17. W.J. Klunne, E.G. Michael, Increasing sustainability of rural community electricity schemes − case study of small hydropower in Tanzania, in International Conference on Sustainable Energy and Technologies (Aachen, Germany, 2009) [Google Scholar]
  18. REA, Rural Energy Agency, Annual Report 2013/2014, Tanzania, 2014 [Google Scholar]
  19. AWF, African Water Facility, The United Republic of Tanzania, Feasibility study for the Kikonge multipurpose dam, Hydropower and Irrigation Project: Project Appraisal Report, 2016 [Google Scholar]
  20. E. Adebayo, B.K. Sovacool, S. Imperiale, It's about dam time: improving microhydro electrification in Tanzania, Energy Sustain. Dev. 17, 378–385 (2013) [CrossRef] [Google Scholar]
  21. E.L.B. Kassana, N. Gerard, D. Mashauri, Z. Hailu, D.J. Chambega, S.K. Makhanu et al., Small scale hydropower for rural development (Tanzania, 2005) [Google Scholar]
  22. K.T. Kabaka, F. Gwang'ombe, Challenges in small hydropower in Tanzania: renewable energy perspective, in International Conference on Small Hydropower (2007), pp. 22–24 [Google Scholar]
  23. ESMAP, Energy Sector Management Assistance Program, Small hydro resource mapping in Tanzania. Phase 1 Report, Washington DC 20433, USA, 2015 [Google Scholar]
  24. URT, United Republic of Tanzania, Ministry of Energy and Minerals, Power System Master Plan. 2016 Update (Dar es Salaam, Tanzania, 2016) [Google Scholar]
  25. J.L. Chukwuneke, C.H. Achebe, M.C. Nwosu, J.E. Sinebe, Analysis and simulation on the effect of head and bucket splitter angle on the power output of a Pelton turbine, Int. J. Eng. Appl. Sci. 5, 1–8 (2014) [Google Scholar]
  26. USBR, Reclamation managing water in the west, 2016, [Google Scholar]
  27. B.J. Lewis, J.M. Cimbala, A.M. Wouden, Major historical developments in the design of water wheels and Francis hydroturbines, in IOP Conference Series: Earth and Environmental Science (IOP Publishing, 2014) [Google Scholar]
  28. R.E. Horton, Turbine Water-wheel Tests and Power Tables (Washington, 1906) [Google Scholar]
  29. J.L. Tylee, Chaos in a real system, Simulation 64, 176–183 (1995) [CrossRef] [Google Scholar]
  30. L.E. Matson, The Malkus-Lorenz water wheel revisited, Association of Physics Teachers, 2007, pp. 1114–1122 [Google Scholar]
  31. I. Loots, M. van Dijk, B. Barta, S.J. van Vuuren, J.N. Bhagwan, A review of low head hydropower technologies and applications in a South African context, Renew. Sustain. Energy Rev. 50, 1254–1268 (2015) [CrossRef] [Google Scholar]
  32. C.S. Kaunda, C.Z. Kimambo, T.K. Nielsen, A technical discussion on microhydropower technology and its turbines, Renew. Sustain. Energy Rev. 35, 445–459 (2014) [CrossRef] [Google Scholar]
  33. M.T. Gatte, R.A. Kadhim, Hydropower (Open Access Publisher, INTECH, 2012), pp. 95–124 [Google Scholar]
  34. A. Kumar, T. Schei, A. Ahenkorah, R. Caceres, R. Rodriguez, J.M. Devernay, M. Freitas et al., Hydropower, in IPCC Special Report On Renewable Energy Sources And Climate Change Mitigation, edited by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. hansen, S. Schlömer, C. von Stechow (Cambridge University Press, The United Kingdom and New York, NY, USA, 2011) [Google Scholar]
  35. KBL, A Kirloskar Group Company, 2017, [Google Scholar]
  36. STP, Small Turbine Partner, 2017, [Google Scholar]
  37. VOITH, Hydropower, 2017, [Google Scholar]
  38. Gilkes, Gilbert Gilkes & Gordon Ltd., 2017, [Google Scholar]
  39. ANDRITZ, Hydro, 2017, [Google Scholar]
  40. SIAPRO, Siapro Hydropower Plants, 2017, [Google Scholar]
  41. AGWV, Turbines, 2017, [Google Scholar]
  42. NHE, Nepal Hydro & Electric Limited, 2017, [Google Scholar]
  43. MHU, Protel Multi Energy, 2017, [Google Scholar]
  44. C. Penche, Guide on how to develop a small hydropower plant, European Small Hydropower Association (European Renewable Energy Council, 2004) [Google Scholar]
  45. S.J. Williamson, B.H. Stark, J.D. Booker, Low head pico hydro turbine selection using a multi-criteria analysis, in World Renewable Energy Congress 8-13 May 2011, (Hydropower Application, Linkoping, Sweden, 2011), pp. 1377–1385 [CrossRef] [Google Scholar]
  46. E.N. Smit, Micro hydro power generation, final year project report, Stellenbosch University, Faculty of Engineering, 2005 [Google Scholar]
  47. DHP, Direct Hydro Power, 2017, [Google Scholar]
  48. HRET, Hydro Resource Evaluation Tool, Turbine selection, 2017, [Google Scholar]
  49. J.M. Chapallaz, P. Eichenberger, G. Fischer, Manual on Pumps Used as Turbines (Vieweg, Braunschweig: Printed in the Federal Republic of Germany by Lengericher Handelsdruckerei, Lengerich, 1992) [Google Scholar]
  50. T.T. Borji, Sedimentation and Sustainability of Hydropower Reservoirs: Cases of Grand Ethiopian Renaissance Dam on the Blue Nile River in Ethiopia (Trondheim, 2013) [Google Scholar]
  51. D.B. Lysne, H. Glover, H. Stole, E. Tesakar, Hydraulic Design (Norwegian Institute of Technology, Trondheim, 2003) Vol. 8 [Google Scholar]
  52. G. Morris, Sustainable sediment management reservoirs, 2015, [Google Scholar]
  53. H.P. Neopane, Sediment Erosion in Hydro Turbines (Trondheim, Norway, 2010) [Google Scholar]
  54. Y.W. Shaghude, Review of water resource exploitation and landuse pressure in the Pangani river basin, West. Indian Ocean J. Mar. Sci. 5, 195–207 (2006) [Google Scholar]
  55. J.K. Turpie, Y.M. Ngaga, F.K. Karanja, Catchment Ecosystems and Downstream Water: The Value of Water Resources in the Pangani Basin (Tanzania, 2005) [Google Scholar]
  56. E. Rached, E. Rathgeber, D.B. Brooks, Water Management in Africa and the Middle East: Challenges and Opportunities (Cairo, 1996) [Google Scholar]
  57. G. Jambiya, Restoring the flows in the Great Ruaha river, World Wildlife Fund, 2005 [Google Scholar]
  58. S. Savage, M. Shadrack, Opportunities and challenges for sustainable water resources management in Tanzania, 2008 [Google Scholar]
  59. F.L. Mwanuzi, Assessment of water quality for Pangani river in Tanzania using QUAL2E windows version, in 1st WARFSA/WaterNet Symposium: Sustainable Use of Water Resources (Maputo, 2000), pp. 1–8 [Google Scholar]
  60. R. Andersson, F. Wänseth, M. Cuellar, U. von Mitzlaff, Pangani Falls Re-Development Project in Tanzania (Sweden, 2006) [Google Scholar]
  61. H. Ahlborg, L. Hammar, Drivers and barriers to rural electrification in Tanzania and Mozambique grid-extension, off-grid, and renewable energy technologies, Renew. Energy 61, 117–124 (2014) [CrossRef] [Google Scholar]
  62. W. Rickerson, C. Hanley, C. Laurent, C. Greacen, Implementing a global fund for feed-in tariffs in developing countries: a case study of Tanzania, Renew. Energy 49, 29–32 (2013) [CrossRef] [Google Scholar]
  63. F.S. Javadi, B. Rismanchi, M. Sarraf, O. Afshar, R. Saidur, H.W. Ping et al., Global policy of rural electrification, Renew. Sustain. Energy Rev. 19, 402–416 (2013) [CrossRef] [Google Scholar]
  64. C.S. Kaunda, C.Z. Kimambo, T.K. Nielsen, Potential of small-scale hydropower for electricity generation in Sub-saharan Africa: review article, Renew. Energy 2012, 132606 (2012b) [Google Scholar]
  65. A.H. Mondal, L.M. Kamp, N.I. Pachova, Drivers, barriers, and strategies for implementation of renewable energy technologies in rural areas in Bangladesh − an innovation system analysis, Energy Policy 38, 4626–4634 (2010) [CrossRef] [Google Scholar]
  66. C.S. Kaunda, C.Z. Kimambo, T.K. Nielsen, Hydropower in the context of sustainable energy supply: a review of technologies and challenges, Renew. Energy 2012, 730631 (2012c) [Google Scholar]
  67. URT, United Republic of Tanzania, Ministry of Energy and Minerals: Energy Sector (Tanzania, 2016) [Google Scholar]
  68. EWURA, Energy and Water Utilities Regulatory Authority, Guidelines for Development of Small Power Projects (Dar es Salaam, Tanzania, 2011) [Google Scholar]
  69. EWURA, Energy and Water Utilities Regulatory Authorities, Small Power Projects (Tanzania, 2008) [Google Scholar]
  70. K. Kim, C. Lee, Evaluation and optimization of feed-in tariffs, Energy Policy 49, 192–203 (2012) [CrossRef] [Google Scholar]
  71. M. Moner-Girona, R. Ghanadan, M. Solano-Peralta, I. Kougias, K. Bódis, T. Huld et al., Adaptation of feed-in tariff for remote mini-grids: Tanzania as an illustrative case, Renew. Sustain. Energy Rev. 53, 306–318 (2016) [CrossRef] [Google Scholar]
  72. MEM, Ministry of Energy and Minerals, Energy and Water Utilities Regulatory Authority. Tariff Application Guidelines of 2009 (Dar es Salaam, 2009) [Google Scholar]
  73. K. Lo, A critical review of China's rapidly developing renewable energy and energy efficiency policies, Renew. Sustain. Energy Rev. 29, 508–516 (2014) [CrossRef] [Google Scholar]
  74. EWURA, Energy and Water Utilities Regulatory Authority, The Electricity Standardized Small Power Projects Tariff (Tanzania, 2015) [Google Scholar]
  75. G. Trypolska, An assessment of the optimal level of feed-in tariffs in Ukraine, Sustain. Energy Technol. Assess. 7, 178–186 (2014) [Google Scholar]
  76. D. Peng, R. Poudineh, Sustainable Electricity Pricing for Tanzania (Oxford Institute for Energy Studies, 2016) [CrossRef] [Google Scholar]
  77. A. Pegels, Renewable energy in South Africa: potentials, barriers and options for support, Energy Policy 38, 4945–4954 (2010) [CrossRef] [Google Scholar]
  78. F. Beck, E. Martinot, Renewable energy policies and barriers, Encycl. Energy 5, 365–383 (2004) [Google Scholar]
  79. L. Liu, C. Liu, J. Wang, Deliberating on renewable and sustainable energy policies in China, Renew. Sustain. Energy Rev. 17, 191–198 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.