Renew. Energy Environ. Sustain.
Volume 2, 2017
Sustainable energy systems for the future
Article Number 9
Number of page(s) 5
Published online 24 August 2017
  1. P. Ahuja, S.K. Ujjain, R.K. Sharma, G. Singh, Enhanced supercapacitor performance by incorporating nickel in manganese oxide, RSC Adv. 4, 57192 (2014) [CrossRef] [Google Scholar]
  2. R. Gokhale, V. Aravindan, P. Yadav, S. Jain, D. Phase, S. Madhavi, S. Ogale, Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application, Carbon 80, 462 (2014) [CrossRef] [Google Scholar]
  3. J. Jiay, G. Tan, S. Peng, D. Qian, J. Liu, D. Luo, Y. Liu, Electrochemical performance of carbon-coated Li3V2(PO4) as a cathode material for a symmetric hybrid capacitor, Electrochim. Acta 107, 59 (2013) [CrossRef] [Google Scholar]
  4. T. Kim, A. Ramadoss, B. Saravanakumar, G.K. Veerasubramani, S.J. Kim, Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors, Appl. Surf. Sci. 370, 452 (2016) [CrossRef] [Google Scholar]
  5. D. Cai, S. Xiao, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li, T. Wang, Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors, Electrochim. Acta 142, 118 (2014) [CrossRef] [Google Scholar]
  6. T. Wang, Y. Guo, B. Zhao, S. Yu, H.P. Yang, D. Lu, X.Z. Fu, R. Sun, C.P. Wong, NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes, J. Power Sources 286, 371 (2015) [CrossRef] [Google Scholar]
  7. M. Huang, W. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors, J. Power Sources 252, 98 (2014) [CrossRef] [Google Scholar]
  8. K. Xu, J. Yang, S. Li, Q. Liu, J. Hu, Facile synthesis of hierarchical mesoporous NiCo2O4 nanoflowers with large specific surface area for high-performance supercapacitor, Mater. Lett. 10, 83 (2016) [Google Scholar]
  9. E.R. Ezeigwe, P.S. Khiew, C.W. Siong, M.T.T. Tan, Solvothermal synthesis of NiCo2O4 nanocomposites on liquid-phase exfoliated graphene as an electrode material for electrochemical capacitors, J. Alloys Compd. 693, 1133 (2017) [CrossRef] [Google Scholar]
  10. Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors, J. Mater. Chem. A 3, 43 (2015) [CrossRef] [Google Scholar]
  11. J. Cho, S. Jeong, Y. Kim, Commercial and research battery technologies for electrical energy storage applications, Progr. Energy Combust. Sci. 48, 84 (2015) [CrossRef] [Google Scholar]
  12. X. Han, T. Ji, Z. Zhao, H. Zhang, Economic evaluation of batteries planning in energy storage power stations for load shifting, Renew. Energy 78, 643 (2015) [Google Scholar]
  13. Y. Tian, H. Li, Z. Ruan, G. Cui, S. Yan, Synthesis of NiCo2O4 nanostructures with different morphologies for the removal of methyl orange, Appl. Surf. Sci. 393, 434 (2017) [CrossRef] [Google Scholar]
  14. S. Sun, S. Li, S. Wang, Y. Li, L. Han, H. Kong, P. Wang, Fabrication of hollow NiCo2O4 nanoparticle/graphene composite for supercapacitor electrode, Mater. Lett. 182, 23 (2016) [CrossRef] [Google Scholar]
  15. J. Yang, M. Cho, Y. Lee, Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation, Biosens. Bioelectron. 75, 15 (2016) [CrossRef] [Google Scholar]
  16. E. Umeshbabu, G.R. Rao, NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation, Electrochim. Acta 213, 717 (2016) [CrossRef] [Google Scholar]
  17. D. Dong, Y. Wu, X. Zhang, J. Yao, Y. Huang, D. Li, C.Z. Li, Eggshell membrane-template synthesis of highly crystalline perovskite ceramics for solid oxide fuel cells, J. Mater. Chem. 21, 1028 (2010) [CrossRef] [Google Scholar]
  18. P. He, B. Chen, Y. Wang, Z. Xie, F. Dong, Preparation and characterization of a novel organophilic vermiculite/poly (methyl methacrylate)/1-butyl-3-methylimidazolium hexafluoro phosphate composite gel polymer electrolyte, Electrochem. Acta 111, 108 (2013) [CrossRef] [Google Scholar]
  19. E.P. Grishina, L.M. Ramenskaya, A.N. Mudrov, Conductivity and dielectric properties of heterogeneous films based on homo-and copolymers of methyl (methacrylate) and vinyl pyrrolidone doped with ionic liquid, Eur. Polym. J. 59, 247 (2014) [CrossRef] [Google Scholar]
  20. M. Balaz, Eggshell membrane biomaterial as a platform for applications in materials science, Acta Biomater. 10, 3827 (2014) [CrossRef] [Google Scholar]
  21. B. Ge, K. Li, Z. Fu, L. Pu, X. Zhang, Z. Liu, K. Huang, The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell, J. Power Sources 303, 325 (2016) [CrossRef] [Google Scholar]
  22. R. Ding, L. Qi, M. Jia, H. Wang, Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors, Electrochim. Acta 107, 494 (2013) [CrossRef] [Google Scholar]
  23. J. Pu, J. Wang, X. Jin, F. Cui, E. Sheng, Z. Wang, Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors, Electrochim. Acta 106, 226 (2013) [CrossRef] [Google Scholar]
  24. Z. Ma, G. Shao, Y. Fan, M. Feng, D. Shen, H. Wang, Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core-shell heterostructure and 3D-nanocage N-doped porous carbon, Sustain. Chem. Eng. 5, 4865 (2017) [Google Scholar]
  25. M. Yao, N. Wang, J. Yin, W. Hu, Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity, J. Mater. Sci.: Mater. Electron. 28, 11119 (2017). Doi: 10.1007/s10854-017-6898-2 [Google Scholar]
  26. Y.Z. Su, Q.Z. Xu, G.F. Chen, H. Cheng, N. Li, Z.Q. Liu, One dimensional spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties, Electrochim. Acta 174, 1216 (2015) [CrossRef] [Google Scholar]
  27. Y. Zhang, J. Wang, L. Yu, L. Wang, P. Wan, H. Wei, L. Lin, S. Hussain, Ni@NiCo2O4 core/shells composite as electrode material for supercapacitor, Ceram. Int. 43, 2057 (2015) [CrossRef] [Google Scholar]
  28. A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3, Electrochim. Acta 189, 283 (2016) [CrossRef] [Google Scholar]
  29. R. Ding, L. Qi, H. Wang, An investigation of spinel NiCo2O4 as anode for Na-ion capacitors, Electrochim. Acta 114, 726 (2013) [CrossRef] [Google Scholar]
  30. M.K. Rath, B.H. Choi, M.J. Ji, K.T. Lee, Eggshell-membrane-template synthesis of hierarchically-ordered NiO-Ce0.8Gd0.2O1.9 composite powders and their electrochemical performances as SOFC anodes, Ceram. Int. 40, 3295 (2014) [CrossRef] [Google Scholar]
  31. D.P. Dubal, P. Gomez-Romero, B.R. Sankapal, R. Holze, Nickel cobaltite as an emerging material for supercapacitors: an overview, Nano Energy 11, 377 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.