Open Access
Renew. Energy Environ. Sustain.
Volume 2, 2017
Article Number 4
Number of page(s) 8
Published online 03 May 2017
  1. H. Takagi, H. Hatori, Y. Soneda, N. Yoshizawa, Y. Yamada, Adsorptive hydrogen storage in carbon and porous materials, Mater. Sci. Eng. B 108, 143 (2004) [CrossRef] [Google Scholar]
  2. H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon, J. Am. Chem. Soc. 131, 7016 (2009) [CrossRef] [Google Scholar]
  3. J. Li, S. Cheng, Q. Zhao, P. Long, J. Dong, Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5, Int. J. Hydrogen Energy 34, 1377 (2009) [CrossRef] [Google Scholar]
  4. S. Park, B. Kim, Y. Lee, M. Cho, Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers, Int. J. Hydrogen Energy 33, 1706 (2008) [CrossRef] [Google Scholar]
  5. S.T. Nguyen, H.T. Nguyen, A. Rinaldi, N.P.V. Nguyen, Z. Fan, H.M. Duong, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids Surf. A Physicochem. Eng. Asp. 414, 352 (2012) [CrossRef] [Google Scholar]
  6. W. Zhao, V. Fierro, N. Fernández-Huerta, M.T. Izquierdo, A. Celzard, Hydrogen uptake of high surface area-activated carbons doped with nitrogen, Int. J. Hydrogen Energy 38, 10453 (2013) [CrossRef] [Google Scholar]
  7. M. Kunowsky, B. Weinberger, F. Lamaridarkrim, F. Suarezgarcia, D. Cazorlaamoros, A. Linaressolano, Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage, Int. J. Hydrogen Energy 33, 3091 (2008) [CrossRef] [Google Scholar]
  8. M. Jordá-Beneyto, F. Suárez-García, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures, Carbon 45, 293 (2007) [CrossRef] [Google Scholar]
  9. L. Zhou, Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy 29, 319 (2004) [CrossRef] [Google Scholar]
  10. R. Paggiaro, P. Bénard, W. Polifke, Cryo-adsorptive hydrogen storage on activated carbon. I: thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage, Int. J. Hydrogen Energy 35, 638 (2010) [CrossRef] [Google Scholar]
  11. V. Jiménez, A. Ramírez-Lucas, P. Sánchez, J.L. Valverde, A. Romero, Hydrogen storage in different carbon materials: influence of the porosity development by chemical activation, Appl. Surf. Sci. 258, 2498 (2012) [CrossRef] [Google Scholar]
  12. C. Carpetis, W. Peschka, A study on hydrogen storage by use of cryoadsorbents, Int. J. Hydrogen Energy 5, 539 (1980) [CrossRef] [Google Scholar]
  13. J.P. Marco-Lozar, J. Juan-Juan, F. Suárez-García, D. Cazorla-Amorós, A. Linares-Solano, MOF-5 and activated carbons as adsorbents for gas storage, Int. J. Hydrogen Energy 37, 2370 (2012) [CrossRef] [Google Scholar]
  14. J.J. Purewal, D. Liu, J. Yang, A. Sudik, D.J. Siegel, S. Maurer et al., Increased volumetric hydrogen uptake of MOF-5 by powder densification, Int. J. Hydrogen Energy 37, 2723 (2012) [CrossRef] [Google Scholar]
  15. J. Purewal, D. Liu, A. Sudik, M. Veenstra, J. Yang, S. Maurer et al., Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites, J. Phys. Chem. C 116, 20199 (2012) [CrossRef] [Google Scholar]
  16. J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites, Int. J. Hydrogen Energy 32, 4998 (2007) [CrossRef] [Google Scholar]
  17. M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet, Chem. Eng. Process. Process Intensif. 79, 1 (2014) [CrossRef] [Google Scholar]
  18. C.M. Veziri, G. Pilatos, G.N. Karanikolos, A. Labropoulos, K. Kordatos, V. Kasselouri-Rigopoulou et al., Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition, Microporous Mesoporous Mater. 110, 41 (2008) [CrossRef] [Google Scholar]
  19. S. Banerjee, K. Dasgupta, A. Kumar, P. Ruz, B. Vishwanadh, J.B. Joshi et al., Comparative evaluation of hydrogen storage behavior of Pd doped carbon nanotubes prepared by wet impregnation and polyol methods, Int. J. Hydrogen Energy 40, 3268 (2015) [CrossRef] [Google Scholar]
  20. C.-H. Chen, C.-C. Huang, Effect of surface characteristics and catalyst loaded amount on hydrogen storage in carbon nanotubes, Microporous Mesoporous Mater. 112, 553 (2008) [CrossRef] [Google Scholar]
  21. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon 43, 786 (2005) [CrossRef] [Google Scholar]
  22. G. Krishnamurthy, R. Namitha, S. Agarwal, Synthesis of carbon nanotubes and carbon spheres and study of their hydrogen storage property by electrochemical method, Procedia Mater. Sci. 5, 1056 (2014) [CrossRef] [Google Scholar]
  23. C.-H. Chen, C.-C. Huang, Enhancement of hydrogen spillover onto carbon nanotubes with defect feature, Microporous Mesoporous Mater. 109, 549 (2008) [CrossRef] [Google Scholar]
  24. J. Yuan, Y. Zhu, Y. Li, L. Zhang, L. Li, Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride, Int. J. Hydrogen Energy 39, 10184 (2014) [CrossRef] [Google Scholar]
  25. A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.Z. Moshfegh, P. Parvin, A.N. Golikand, Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions, J. Phys. Chem. C 115, 6994 (2011) [CrossRef] [Google Scholar]
  26. B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications, Int. J. Hydrogen Energy 38, 2240 (2013) [CrossRef] [Google Scholar]
  27. Z.M. Ao, Q. Jiang, R.Q. Zhang, T.T. Tan, S. Li, Al doped graphene: a promising material for hydrogen storage at room temperature, J. Appl. Phys. 105, 1 (2009) [Google Scholar]
  28. Z. Ao, S. Li, Hydrogenation of graphene and hydrogen diffusion behavior on graphene/graphane interface, Graphene Simul., 53 (2011) [Google Scholar]
  29. C. Zhang, Z. Geng, M. Cai, J. Zhang, X. Liu, H. Xin et al., Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake, Int. J. Hydrogen Energy 38, 9243 (2013) [CrossRef] [Google Scholar]
  30. N. Rajalakshmi, B.Y. Sarada, K.S. Dhathathreyan, Porous carbon nanomaterial from corncob as hydrogen storage material, Adv. Porous Mater. 5, 28 (2015) [Google Scholar]
  31. Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding et al., Application studies of activated carbon derived from rice husks produced by chemical-thermal process − a review, Adv. Colloid Interface Sci. 163, 39 (2011) [CrossRef] [Google Scholar]
  32. H. Chen, H. Wang, Z. Xue, L. Yang, Y. Xiao, M. Zheng et al., High hydrogen storage capacity of rice hull based porous carbon, Int. J. Hydrogen Energy 37, 18888 (2012) [CrossRef] [Google Scholar]
  33. T. Yang, A.C. Lua, Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation, Microporous Mesoporous Mater. 63, 113 (2003) [CrossRef] [Google Scholar]
  34. M. Sharon, T. Soga, R. Afre, D. Sathiyamoorthy, K. Dasgupta, S. Bhardwaj et al., Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials, Int. J. Hydrogen Energy 32, 4238 (2007) [CrossRef] [Google Scholar]
  35. H. Akasaka, T. Takahata, I. Toda, H. Ono, S. Ohshio, S. Himeno et al., Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes, Int. J. Hydrogen Energy 36, 580 (2011) [CrossRef] [Google Scholar]
  36. R. Yang, G. Liu, M. Li, J. Zhang, X. Hao, Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem, Microporous Mesoporous Mater. 158, 108 (2012) [CrossRef] [Google Scholar]
  37. F. Zhang, H. Ma, J. Chen, G.-D. Li, Y. Zhang, J.-S. Chen, Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks, Bioresour. Technol. 99, 4803 (2008) [CrossRef] [Google Scholar]
  38. A. Minoda, S. Oshima, H. Iki, E. Akiba, Synthesis of KOH-activated porous carbon materials and study of hydrogen adsorption, J. Alloys Compd. 580, S301 (2013) [CrossRef] [Google Scholar]
  39. M. Armandi, B. Bonelli, K. Cho, R. Ryoo, E. Garrone, Study of hydrogen physisorption on nanoporous carbon materials of different origin, Int. J. Hydrogen Energy 36, 7937 (2011) [CrossRef] [Google Scholar]
  40. N.H. Phan, S. Rio, C. Faur, L. Le Coq, P. Le Cloirec, T.H. Nguyen, Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications, Carbon 44, 2569 (2006) [CrossRef] [Google Scholar]
  41. A. Bledzki, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24, 221 (1999) [Google Scholar]
  42. F. Gao, D.-L. Zhao, Y. Li, X.-G. Li, Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area, J. Phys. Chem. Solids 71, 444 (2010) [CrossRef] [Google Scholar]
  43. S.J. Yang, J.H. Cho, G.H. Oh, K.S. Nahm, C.R. Park, Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature, Carbon 47, 1585 (2009) [CrossRef] [Google Scholar]
  44. C. Solar, A. Blanco, A. Vallone, K. Sapag, Adsorption of methane in porous materials as the basis for the storage of natural gas, Nat. Gas 10, 205 (2010) [Google Scholar]
  45. M. Jordá-Beneyto, D. Lozano-Castelló, F. Suárez-García, D. Cazorla-Amorós, Á. Linares-Solano, Advanced activated carbon monoliths and activated carbons for hydrogen storage, Microporous Mesoporous Mater. 112, 235 (2008) [CrossRef] [Google Scholar]
  46. T.-H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J. 158, 129 (2010) [CrossRef] [Google Scholar]
  47. C. Bouchelta, M.S. Medjram, O. Bertrand, J.-P. Bellat, Preparation and characterization of activated carbon from date stones by physical activation with steam, J. Anal. Appl. Pyrol. 82, 70 (2008) [Google Scholar]
  48. K. Babel, D. Janasiak, K. Jurewicz, Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials, Carbon 50, 5017 (2012) [CrossRef] [Google Scholar]
  49. Y. Xia, G.S. Walker, D.M. Grant, R. Mokaya, Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping, J. Am. Chem. Soc., 131, 16493 (2009) [CrossRef] [Google Scholar]
  50. H. Xie, Y. Shen, G. Zhou, S. Chen, Y. Song, J. Ren, Effect of preparation conditions on the hydrogen storage capacity of activated carbon adsorbents with super-high specific surface areas, Mater. Chem. Phys. 141, 203 (2013) [CrossRef] [Google Scholar]
  51. M. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH, Carbon 41, 267 (2003) [CrossRef] [Google Scholar]
  52. M.A. Lillo-Ródenas, J. Juan-Juan, D. Cazorla-Amorós, A. Linares-Solano, About reactions occurring during chemical activation with hydroxides, Carbon 42, 1371 (2004) [CrossRef] [Google Scholar]
  53. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shells using microwave heating, Bioresour. Technol. 101, 6163 (2010) [Google Scholar]
  54. Z. Zheng, Q. Gao, J. Jiang, High hydrogen uptake capacity of mesoporous nitrogen-doped carbons activated using potassium hydroxide, Carbon 48, 2968 (2010) [CrossRef] [Google Scholar]
  55. S.-Y. Lee, S.-J. Park, Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors, Int. J. Hydrogen Energy 35, 6757 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.