Open Access
Issue |
Renew. Energy Environ. Sustain.
Volume 9, 2024
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/rees/2024003 | |
Published online | 21 March 2024 |
- A. El Hammoumi, A. Chalh, A. Allouhi, S. Motahhir, A. El Ghzizal, A. Derouich, Design and construction of a test bench to investigate the potential of floating PV systems, J. Clean. Prod. 278, (2021) [Google Scholar]
- M. Rosa-Clot, G.M. Tina, S. Nizetic, Floating photovoltaic plants and wastewater basins: An Australian project, Energy Procedia, (2017) [Google Scholar]
- REN, Renewables in Cities 2021 Global Status Report, 2021. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR 2021_Full_Report.pdf [Google Scholar]
- G.M. Tina, F. Bontempo Scavo, L. Merlo, F. Bizzarri, Comparative analysis of monofacial and bifacial photovoltaic modules for floating power plants, Appl. Energy, 281, (2021) [Google Scholar]
- D. Lindholm, J. Selj, T. Kjeldstad, H. Fjær, V. Nysted, CFD modelling to derive U-values for floating PV technologies with large water footprint, Sol. Energy, 238, 238–247 (2022) [CrossRef] [Google Scholar]
- N.M. Kumar, U. Subramaniam, M. Mathew, A. Ajitha, D.J. Almakhles, Exergy analysis of thin-film solar PV module in ground-mount, floating and submerged installation methods, Case Stud. Therm. Eng. 21, (2020) [Google Scholar]
- A. Rahaman et al., Floating photovoltaic module temperature estimation: modeling and comparison, Renew. Energy, 208, 162–180 (2023) [CrossRef] [Google Scholar]
- J.A. Duffie, W.A. Beckman, Solar engineering of thermal processes: fourth edition. (2013) [Google Scholar]
- K.S. Hayibo, J.M. Pearce, Foam-based floatovoltaics: a potential solution to disappearing terminal natural lakes, Renew. Energy, 188, (2022) [Google Scholar]
- K. Yaman, G. Arslan, A detailed mathematical model and experimental validation for coupled thermal and electrical performance of a photovoltaic (PV) module, Appl. Therm. Eng. 195, (2021) [Google Scholar]
- E. Tercan, M.A. Dereli, B.O. Saracoglu, Location alternatives generation and elimination of floatovoltaics with virtual power plant designs, Renew. Energy, 193, (2022) [Google Scholar]
- B. Sutanto, Y.S. Indartono, A.T. Wijayanta, H. Iacovides, Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: numerical and experimental analyses, Int. J. Therm. Sci. 180, (2022) [Google Scholar]
- R.O. Yakubu, D.A. Quansah, L.D. Mensah, W. Ahiataku-Togobo, P. Acheampong, M.S. Adaramola, Comparison of ground-based and floating solar photovoltaic systems performance based on monofacial and bifacial modules in Ghana, Energy Nexus, 12, (2023) [Google Scholar]
- S.M. Choi, C.D. Park, S.H. Cho, B.J. Lim, Effects of wind loads on the solar panel array of a floating photovoltaic system – experimental study and economic analysis, Energy 256, (2022) [Google Scholar]
- C. Zhang, J. Dai, K.K. Ang, H.V. Lim, Development of compliant modular floating photovoltaic farm for coastal conditions, Renew. Sustain. Energy Rev. 190, 114084 (2024) [CrossRef] [Google Scholar]
- A.K. Pandey, V.V. Tyagi, S.K. Tyagi, Exergetic analysis and parametric study of multi-crystalline solar photovoltaic system at a typical climatic zone, Clean Technol. Environ. Policy, 15, (2013) [Google Scholar]
- L. Micheli, The temperature of floating photovoltaics: case studies, models and recent findings, Sol. Energy, 242, 234–245 (2022) [CrossRef] [Google Scholar]
- P. Yang, L.H.C. Chua, K.N. Irvine, J. Imberger, Radiation and energy budget dynamics associated with a floating photovoltaic system, Water Res. 206, (2021) [Google Scholar]
- I. Dincer, A. Abu-Rayash, Chapter 6 - Sustainability modeling, in: I. Dincer, A. Abu-Rayash (Eds.), Energy Sustainability, Academic Press, 2020, pp. 119–164 [Google Scholar]
- A. Bejan, Convection heat transfer: fourth edition. (2013) [Google Scholar]
- W.C. Swinbank, Long-wave radiation from clear skies, Q.J. R. Meteorol. Soc. 89, 339–348 (1963) [CrossRef] [Google Scholar]
- A. Chouder, S. Silvestre, N. Sadaoui, L. Rahmani, Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters, Simul. Model. Pract. Theory, 20, (2012) [Google Scholar]
- M.C. Peel, B.L. Finlayson, T.A. McMahon, Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007) [CrossRef] [Google Scholar]
- M.S. Reboita, M. Rodrigues, L.F. Silva, M.A. Alves, Aspectos climáticos do estado de Minas Gerais, Rev. Bras. Climatol. 18, 307–326 (2016) [Google Scholar]
- Pvsyst, PVsyst: Software for the Study and Simulation of Photovoltaic Systems, 2023. www.pvsyst.com [Google Scholar]
- F.J. Collado, Quick evaluation of the annual heliostat field efficiency, Sol. Energy, 82, (2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.