Open Access
Review
Issue
Renew. Energy Environ. Sustain.
Volume 9, 2024
Article Number 7
Number of page(s) 13
DOI https://doi.org/10.1051/rees/2024001
Published online 26 March 2024
  1. Y. Alhorr, E. Eliskandarani, E. Elsarrag, Approaches to reducing carbon dioxide emissions in the built environment: low carbon cities, Int. J. Sustain. Built Environ. 3, 167–178 (2014) [Google Scholar]
  2. Carbon Dioxide Emissions From Electricity − World Nuclear Association. https://www.world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity.aspx (accessed September 26, 2022) [Google Scholar]
  3. Global Energy Review: CO2 Emissions in 2021 -Analysis, IEA. https://www.iea.org/reports/global-energy-review-co2-emissions-in- 2021–2 (accessed August 24, 2022) [Google Scholar]
  4. The Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed June 04, 2022). [Google Scholar]
  5. What is the Kyoto Protocol? | UNFCCC. https://unfccc., int/kyoto_protocol (accessed July 04, 2022) [Google Scholar]
  6. Kigali Amendment to the Montreal Protocol, Ministry for the Environment, May 13, 2019. https://environment.govt.nz/what-government-is-doing/international-action/vienna-convention-and-montreal-protocol/kigali-amendment-to-the-montreal-protocol/ (accessed July 04, 2022) [Google Scholar]
  7. Renewables - Global Energy Review 2021 −Analysis, IEA. https://www.iea.org/reports/global-energy-review-2021/renewables (accessed September 28, 2022) [Google Scholar]
  8. J.J. Justo, F. Mwasilu, J. Lee, J.-W. Jung, AC-microgrids versus DC-microgrids with distributed energy resources: a review, Renew. Sustain. Energy Rev. 24, 387–405 (2013) [Google Scholar]
  9. B. Wrålsen, B. Faessler, Multiple scenario analysis of battery energy storage system investment: measuring economic and circular viability, Batteries 8, 2 (2022) [Google Scholar]
  10. M. Momirlan, T.N. Veziroglu, Current status of hydrogen energy, Renew. Sustain. Energy Rev. 6, 141–179 (2002) [Google Scholar]
  11. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review, Prog. Nat. Sci. 19, 291–312 (2009) [Google Scholar]
  12. L. Trigueiro dos Santos, M. Sechilariu, F. Locment, Optimized load shedding approach for grid-connected DC microgrid systems under realistic constraints, Buildings 6, 4 (2016) [Google Scholar]
  13. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons, Renew. Sustain. Energy Rev., 12, 1221–1250 (2008) [Google Scholar]
  14. A. Beckford, Hydrogen fuel cells vs batteries: which is better?, MotorBiscuit, Aug. 21, 2021. https://www.motorbiscuit.com/hydrogen-fuel-cells-vs-batteries/ (accessed October 05, 2022) [Google Scholar]
  15. Lithium-ion Battery Pack Prices Rise for First Time to an Average of $151/kWh, BloombergNEF, Decenber 06, 2022. https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/ (accessed September 01, 2023) [Google Scholar]
  16. Hydrogen Production: Electrolysis, Energy.gov. https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis (accessed September 01, 2023) [Google Scholar]
  17. Y. Han, W. Chen, Q. Li, H. Yang, F. Zare, Y. Zheng, Two-level energy management strategy for PV-fuel cell-battery-based DC microgrid, Int. J. Hydrog. Energy 44, 19395–19404 (2019) [Google Scholar]
  18. M.S.B. Arif, M.A. Hasan, 2-Microgrid architecture, control, and operation, in: A.H. Fathima, N. Prabaharan, K. Palanisamy, A. Kalam, S. Mekhilef, J.J. Justo (Eds.), Hybrid-Renewable Energy Systems in Microgrids (Woodhead Publishing Series in Energy. Woodhead Publishing, 2018), pp. 23–37. [Google Scholar]
  19. Auckland Campus One − CDC Data Centres. https://cdcdc.com.au/auckland-campus-one/ (accessed August 25, 2022) [Google Scholar]
  20. M. Fotopoulou, D. Rakopoulos, D. Trigkas, F. Stergiopoulos, O. Blanas, S. Voutetakis, State of the art of low and medium voltage direct current (DC) microgrids, Energies 14, 18 (2021) [Google Scholar]
  21. IEEE Standard for DC Microgrids for Rural and Remote Electricity Access Applications, IEEE Std 203010-2021, December 2021, pp. 1–47 [Google Scholar]
  22. F.S. Al-Ismail, DC microgrid planning, operation, and control: a comprehensive review, IEEE Access 9, 36154–36172 (2021) [Google Scholar]
  23. M. Mishra, B. Patnaik, M. Biswal, S. Hasan, R.C. Bansal, A systematic review on DC-microgrid protection and grounding techniques: issues, challenges and future perspective, Appl. Energy 313, 118810 (2022) [Google Scholar]
  24. K.A. Khan, M. Khalid, Improving the transient response of hybrid energy storage system for voltage stability in DC microgrids using an autonomous control strategy, IEEE Access 9, 10460–10472 (2021) [Google Scholar]
  25. D. Das, M.J. Hossain, S. Mishra, B. Singh, Bidirectional power sharing of modular DABs to improve voltage stability in DC microgrids, IEEE Trans. Ind. Appl. 58, 2369–2377 (2022) [Google Scholar]
  26. T.S. Babu, K.R. Vasudevan, V.K. Ramachandaramurthy, S.B. Sani, S. Chemud, R.M. Lajim, A comprehensive review of hybrid energy storage systems: converter topologies, control strategies and future prospects, IEEE Access 8, 148702–148721 (2020) [Google Scholar]
  27. A. Morán-Durán, A. Martínez-Sibaja, J.P. Rodríguez-Jarquin, R. Posada-Gómez, O.S. González, PEM fuel cell voltage neural control based on hydrogen pressure regulation, Processes 7, 7 (2019) [Google Scholar]
  28. L. Team, Efficiency of fuel cell: comparation and formula | Linquip, October 05, 2021. https://www.linquip.com/blog/efficiency-of-fuel-cell/ (accessed September 01, 2022) [Google Scholar]
  29. A.G. Tsikalakis, N.D. Hatziargyriou, Centralized control for optimizing microgrids operation, in: 2011 IEEE Power and Energy Society General Meeting, July 2011, pp. 1–8 [Google Scholar]
  30. G. Ensermu, A. Bhattacharya, N. Panigrahy, Real-time simulation of smart DC microgrid with decentralized control system under source disturbances, Arab. J. Sci. Eng. 44, 7173–7185 (2019) [Google Scholar]
  31. X. Zhu, F. Meng, Z. Xie, Y. Yue, An inertia and damping control method of DC-DC converter in DC microgrids, IEEE Trans. Energy Convers., 35, 799–807 (2020) [Google Scholar]
  32. H. Armghan, M. Yang, M.Q. Wang, N. Ali, A. Armghan, Nonlinear integral backstepping based control of a DC microgrid with renewable generation and energy storage systems, Int. J. Electr. Power Energy Syst. 117, 105613 (2020) [Google Scholar]
  33. X. Lu, X. Yu, J. Lai, J.M. Guerrero, H. Zhou, Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links, IEEE Trans. Ind. Inform. 13, 448–460 (2017) [Google Scholar]
  34. T.L. Vandoorn, J.C. Vasquez, J. De Kooning, J.M. Guerrero, L. Vandevelde, Microgrids: hierarchical control and an overview of the control and reserve management strategies, IEEE Ind. Electron. Mag. 7, 42–55 (2013) [Google Scholar]
  35. O. Palizban, K. Kauhaniemi, Hierarchical control structure in microgrids with distributed generation: island and grid-connected mode, Renew. Sustain. Energy Rev. 44, 797–813 (2015) [Google Scholar]
  36. Comparison of Fuel Cell Technologies, Energy.gov. https://www.energy.gov/eere/fuelcells/comparison-fuel-cell-technologies (accessed July 07, 2022) [Google Scholar]
  37. N.P. Brandon, Fuel cells: materials, in: K.H.J. Buschow, R.W. Cahn,M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (Elsevier, Oxford, 2004), pp. 1–5 [Google Scholar]
  38. M.H. Nehrir, C. Wang, Electric renewable energy systems, in: M.H. Rashid (Ed.), Electric Renewable Energy Systems (Academic Press, Boston, 2016), pp. 92–113 [Google Scholar]
  39. A.Z. Weber, S. Balasubramanian, P.K. Das, Chapter 2-Proton exchange membrane fuel cells, in: K. Sundmacher (Ed.),Advances in Chemical Engineering, in: Fuel Cell Engineering, Vol. 41 (Academic Press,2012), pp. 65–144 [Google Scholar]
  40. A. Alaswad, A. Palumbo, M. Dassisti, A.G. Olabi, Fuel cell technologies, applications, and state of the art. A reference guide, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2016 [Google Scholar]
  41. F.Z. Belhaj, H. El Fadil, Z. El Idrissi, A. Intidam, M. Koundi, F. Giri, New equivalent electrical model of a fuel cell and comparative study of several existing models with experimental data from the PEMFC Nexa 1200 W, Micromachines 12, 9 (2021) [Google Scholar]
  42. S.A. Ansari, M. Khalid, K. Kamal, T. Abdul Hussain Ratlamwala, G. Hussain, M. Alkahtani, Modeling and simulation of a proton exchange membrane fuel cell alongside a waste heat recovery system based on the organic rankine cycle in MATLAB/SIMULINK environment, Sustainability , 13 (2021) [Google Scholar]
  43. T.R. Ralph, S. Hudson, D.P. Wilkinson, Electrocatalyst stability In PEMFCs and the role of fuel starvation and cell reversal tolerant anodes, ECS Trans. 1, 67 (2006) [Google Scholar]
  44. B. Gou, B. Diong, B. Diong, Fuel Cells: Dynamic Modeling and Control with Power Electronics Applications, 2nd edn. (Taylor & Francis Group Portland, United Kingdom, 2016) [Google Scholar]
  45. J.T. Pukrushpan, H. Peng, A.G. Stefanopoulou, Simulation and analysis of transient fuel cell system performance based on a dynamic reactant flow model (American Society of Mechanical Engineers Digital Collection, 2008), pp. 637–648 [Google Scholar]
  46. A.G. Anastasiadis, S.A. Konstantinopoulos, G.P. Kondylis, G.A. Vokas, P. Papageorgas, Effect of fuel cell units in economic and environmental dispatch of a Microgrid with penetration of photovoltaic and micro turbine units, Int. J. Hydrog. Energy 42, 3479–3486 (2017) [Google Scholar]
  47. X. Huang, Z. Zhang, J. Jiang, Fuel cell technology for distributed generation: an overview, in: 2006 IEEE International Symposium on Industrial Electronics, July 2006, pp. 1613–1618 [Google Scholar]
  48. P.E. Dodds et al., Hydrogen and fuel cell technologies for heating: a review, Int. J. Hydrog. Energy 40, 2065–2083 (2015) [Google Scholar]
  49. F. Barbir, Transition to renewable energy systems with hydrogen as an energy carrier, Energy 34, 308–312 (2009) [Google Scholar]
  50. Z. Li, Z. Zheng, L. Xu, X. Lu, A review of the applications of fuel cells in microgrids: opportunities and challenges, BMC Energy 1, 8 (2019) [Google Scholar]
  51. Ø. Ulleberg, T. Nakken, A. Eté, The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools, Int. J. Hydrog. Energy 35, 1841–1852 (2010) [Google Scholar]
  52. L. Zhang, N. Gari, L.V. Hmurcik, Energy management in a microgrid with distributed energy resources, Energy Convers. Manag. 78, 297–305 (2014) [Google Scholar]
  53. Z. Ma, J. Eichman, J. Kurtz, Fuel cell backup power system for grid-service and micro-grid in telecommunication applications (American Society of Mechanical Engineers Digital Collection, 2018) [Google Scholar]
  54. S. Espiari, M. Aleyaasin, Transient response of PEM fuel cells during sudden load change, in: 2010 IEEE International Energy Conference, December 2010, pp. 211–216 [Google Scholar]
  55. N.R. Tummuru, M.K. Mishra, S. Srinivas, Dynamic energy management of renewable grid integrated hybrid energy storage system, IEEE Trans. Ind. Electron. 62, 7728–7737 (2015) [Google Scholar]
  56. S. K. Kollimalla, M.K. Mishra, A. Ukil, H.B. Gooi, DC grid voltage regulation using new HESS control strategy, IEEE Trans. Sustain. Energy. 8, 772–781 (2017) [Google Scholar]
  57. A.A. Kamel, H. Rezk, N. Shehata, J. Thomas, Energy management of a DC microgrid composed of photovoltaic/fuel cell/battery/supercapacitor systems, Batteries 5, 3 (2019) [Google Scholar]
  58. A. Raza, M.K. Azeem, M.S. Nazir, I. Ahmad, Robust nonlinear control of regenerative fuel cell, supercapacitor, battery and wind based direct current microgrid, J. Energy Storage 64, 107158 (2023) [Google Scholar]
  59. R. Gugulothu, B. Nagu, D. Pullaguram, Energy management strategy for standalone DC microgrid system with photovoltaic/fuel cell/battery storage, J. Energy Storage 57, 106274 (2023) [Google Scholar]
  60. A.A. Saafan, V. Khadkikar, M.S.E. Moursi, H.H. Zeineldin, A new multiport DC-DC converter for DC microgrid applications, IEEE Trans. Ind. Appl. 59, 601–611 (2023) [Google Scholar]
  61. H. Armghan, M. Yang, N. Ali, A. Armghan, A. Alanazi, Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid, Appl. Energy 316, 119050 (2022) [Google Scholar]
  62. S. Jithin, T. Rajeev, Novel adaptive power management strategy for hybrid AC/DC microgrids with hybrid energy storage systems, J. Power Electron. 22, 2056–2068 (2022) [Google Scholar]
  63. F.J. Vivas, F. Segura, J.M. Andújar, Fuzzy logic-based energy management system for grid-connected residential DC microgrids with multi-stack fuel cell systems: a multi-objective approach, Sustain. Energy Grids Netw. 32, 100909 (2022) [Google Scholar]
  64. Y. Liu et al., A novel integral reinforcement learning-based control method assisted by twin delayed deep deterministic policy gradient for solid oxide fuel cell in DC microgrid, IEEE Trans. Sustain. Energy 14, 688–703 (2023) [Google Scholar]
  65. D.N. Luta, A.K. Raji, Energy management system for a hybrid hydrogen fuel cell-supercapacitor in an islanded microgrid, in: 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), January 2019, pp. 611–615 [Google Scholar]
  66. I. San Martín, A. Ursúa, P. Sanchis, Integration of fuel cells and supercapacitors in electrical microgrids: analysis, modelling and experimental validation, Int. J. Hydrog. Energy, 38, 11655–11671 (2013) [Google Scholar]
  67. T.C. Frog, Blue economy CRC | underpinning the growth of the blue economy, Blue Economy Cooperative Research Centre. https://blueeconomycrc.com.au/ (accessed February 27, 2023) [Google Scholar]
  68. A.H. Aghmashhadi, A. Azizi, M. Hoseinkhani, S. Zahedi, G.T. Cirella, Aquaculture site selection of oncorhynchus mykiss (rainbow trout) in markazi province using GIS-based MCDM, ISPRS Int. J. Geo-Inf. 11, 3 (2022) [Google Scholar]
  69. T.T.E. Vo, H. Ko, J.-H. Huh, N. Park, Overview of solar energy for aquaculture: the potential and future trends, Energies 14, 21 (2021) [Google Scholar]
  70. Energy requirements of offshore aquaculture as a market for OE, Blue Economy Cooperative Research Centre. https://blueeconomycrc.com.au/project/oes-study-on-the-energy-requirements-of-offshore-aquaculture-as-a-market-for-oe/ (accessed March 01, 2023) [Google Scholar]
  71. A. Islam, S. Hwa Teo, M.R. Awual, Y.H. Taufiq-Yap, Ultrathin assembles of porous array for enhanced H2 evolution, Sci. Rep. 10, 2324 (2020) [Google Scholar]
  72. Hydrogen Storage and Distribution, Blue Economy Cooperative Research Centre. https://blueeconomycrc.com.au/project/hydrogen-storage-and-distribution/ (accessed March 01, 2023) [Google Scholar]
  73. Zero Emission Bus Trial, Metro Tasmania. https://www.metrotas.com.au/corporate/major-projects/zero-emission-bus-trial/ (accessed February 28, 2023) [Google Scholar]
  74. A. Escamilla, D. Sánchez, L. García-Rodríguez, Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies, Int. J. Hydrog. Energy 47, 17505–17525 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.