Open Access
Renew. Energy Environ. Sustain.
Volume 9, 2024
Article Number 9
Number of page(s) 12
Published online 17 June 2024
  1. D.J. Arent, A. Wise, R. Gelman, The status and prospects of renewable energy for combating global warming, Energy Econ. 33, 584–593 (2011) [CrossRef] [Google Scholar]
  2. T. Abbasi, S.A. Abbasi, Is the use of renewable energy sources an answer to the problems of global warming and pollution? Crit. Rev. Environ. Sci. Technol. 42, 99–154 (2012) [CrossRef] [Google Scholar]
  3. S.R. Bull, Renewable energy today and tomorrow, Proc. IEEE 89, 1216–1226 (2001) [CrossRef] [Google Scholar]
  4. S. Sen, S. Ganguly, Opportunities, barriers and issues with renewable energy development − A discussion, Renew. Sustain. Energy Rev. 69, 1170−1181 (2017) [Google Scholar]
  5. I. Dincer, Renewable energy and sustainable development: a crucial review, Renew. Sustain. Energy Rev. 4, 157–175 (2000) [CrossRef] [Google Scholar]
  6. G. Harper, R. Sommerville, E. Kendrick et al., Recycling lithium-ion batteries from electric vehicles, Nature 575, 75–86 (2019) [CrossRef] [Google Scholar]
  7. B. Kennedy, D. Patterson, S. Camilleri, Use of lithium-ion batteries in electric vehicles, J. Power Sources 90, 156–162 (2000) [Google Scholar]
  8. J. Duan, X. Tang, H. Dai et al., Building safe lithium-ion batteries for electric vehicles: a review, Electrochem. Energy Rev. 3, 1–42 (2020) [CrossRef] [Google Scholar]
  9. G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives, Renew. Sustain. Energy Rev. 89, 292–308 (2018) [CrossRef] [Google Scholar]
  10. A.-I. Stan, M. Świerczyński, D.-I. Stroe et al., Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications − an overview, 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 2014, pp. 713–720 [CrossRef] [Google Scholar]
  11. M.A. Hannan, M.M. Hoque, A. Hussain et al., State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations, IEEE Access 6, 19362–19378 (2018) [CrossRef] [Google Scholar]
  12. T. Greitemeier, S. Lux, The intellectual property enabling gigafactory battery cell production: an in-depth analysis of international patenting trends, SSRN 4766791 [Google Scholar]
  13. J.F. Pierdoná Antoniolli, G.L. Grespan, D. Rodrigues Junior, Challenges and recent progress on solid‐state batteries and electrolytes, using qualitative systematic analysis. A short review, ChemSusChem, e202301808 (2024) [CrossRef] [Google Scholar]
  14. R.S. Teixeira, R.F. Calili, M.F. Almeida, D.R. Louzada, Recurrent neural networks for estimating the state of health of lithium-ion batteries, Batteries 10, 111 (2024) [CrossRef] [Google Scholar]
  15. B. Vedhanarayanan, K.C. Seetha Lakshmi, Beyond lithium-ion: emerging frontiers in next-generation battery technologies, Front. Batter. Energy Storage 3, 1377192 (2024) [Google Scholar]
  16. K. Karuppasamy, J. Lin, D. Vikraman, V. Hiremath, Towards greener energy storage: Brief insights into 3D printed anode materials for sodium-ion batteries, Curr. Opin. Electrochem., Elsevier, 101482, (2024) [Google Scholar]
  17. M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: Issues and challenges, Renew. Sustain. Energy Rev. 69, 771–789 (2017) [Google Scholar]
  18. T.M.I. Mahlia, T.J. Saktisahdan, A. Jannifar et al., A review of available methods and development on energy storage; technology update, Renew. Sustain. Energy Rev. 33, 532–545 (2014) [Google Scholar]
  19. H. Pang, L. Wu, J. Liu et al., Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions, J. Energy Chem. 78, 1–12 (2023) [CrossRef] [Google Scholar]
  20. R. Cao, X. Zhang, H. Yang, C. Wang, Experimental study on heat generation characteristics of lithium-ion batteries using a forced convection calorimetry method, Appl. Therm. Eng. 219, 119559 (2023) [CrossRef] [Google Scholar]
  21. S.J. Drake, M. Martin, D.A. Wetz et al., Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements, J. Power Sources 285, 266–273 (2015) [Google Scholar]
  22. C. Lin, S. Xu, Z. Li et al., Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles, J. Power Sources 294, 633–642 (2015) [Google Scholar]
  23. E. Schuster, C. Ziebert, A. Melcher et al., Thermal behavior and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell, J. Power Sources 286, 580–589 (2015) [Google Scholar]
  24. T.M. Bandhauer, S. Garimella, T.F. Fuller, Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery, J. Power Sources 247, 618–628 (2014) [Google Scholar]
  25. K. Chen, G. Unsworth, X. Li, Measurements of heat generation in prismatic Li-ion batteries, J. Power Sources 261, 28–37 (2014) [Google Scholar]
  26. J. Zhang, J. Huang, Z. Li et al., Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries, J. Therm. Anal. Calorim. 117, 447–461 (2014) [Google Scholar]
  27. K. Onda, H. Kameyama, T. Hanamoto, K. Ito, Experimental study on heat generation behavior of small lithium-ion secondary batteries, J. Electrochem. Soc. 150, A285 (2003) [CrossRef] [Google Scholar]
  28. T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries, J. Electrochem. Soc. 158, R1 (2011) [CrossRef] [Google Scholar]
  29. H. Bang, H. Yang, Y.K. Sun, J. Prakash, In situ studies of Lix Mn2 O 4 and Lix Al0.17Mn1.83 O 3.97 S 0.03 Cathode by IMC, J. Electrochem. Soc. 152, A421 (2005) [Google Scholar]
  30. S.S. Madani, E. Schaltz, K. Knudsen Kær, Heat loss measurement of lithium titanate oxide batteries under fast charging conditions by employing isothermal calorimeter, Batteries 4, 59 (2018) [Google Scholar]
  31. S.S. Madani, E. Schaltz, S.K. Kær, Study of temperature impacts on a lithium-ion battery thermal behaviour by employing isothermal calorimeter, ECS Trans. 87, 295 (2018) [CrossRef] [Google Scholar]
  32. V.G. Choudhari, D.A.S. Dhoble, T.M. Sathe, A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle, J. Energy Storage 32, 101729 (2020) [CrossRef] [Google Scholar]
  33. R. Kantharaj, A.M. Marconnet, Heat generation and thermal transport in lithium-ion batteries: a scale-bridging perspective, Nanoscale Microscale Thermophys. Eng. 23, 128–156 (2019) [CrossRef] [Google Scholar]
  34. H. Pang et al., Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions, J. Energy Chem 78, 1–12 (2023) [Google Scholar]
  35. J. Zhang et al., Modeling the propagation of internal thermal runaway in lithium-ion battery, Appl Energy 362, 123004 (2024) [Google Scholar]
  36. Sadeh et al., A novel hybrid liquid-cooled battery thermal management system for electric vehicles in highway fuel-economy condition, J. Energy Storage 86, 111195 (2024) [Google Scholar]
  37. Li et al., A novel flexible composite phase change material applied to the thermal safety of lithium-ion batteries, J. Energy Storage 86, 111292 (2024) [Google Scholar]
  38. S. Cai, J. Ji, X. Zhang, C. Zhang, Z. Pan, C. Zhang et al., Development of bio-based flexible phase change materials utilizing lauric acid for battery thermal management systems, J. Energy Storage 86, 111382 (2024) [Google Scholar]
  39. L. Macray, Solvent-free approach for processing hybrid solid electrolytes, (2024) [Google Scholar]
  40. T.M. Bandhauer, S. Garimella, T.F. Fuller, Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery, J. Power Sources 247, 618–628 (2014) [Google Scholar]
  41. B. Bedürftig, Equivalent circuit dynamic modeling and parametrization of lithium-ion cells, doi: http://10.26083/tuprints-0002677310.26083/tuprints-00026773 (2024) [Google Scholar]
  42. L. Spitthoff, Investigating the Interaction between degradation and thermal behaviour in lithium-ion batteries, (2023) [Google Scholar]
  43. S. Vashisht, D. Rakshit, S. Panchal, M. Fowler, R. Fraser, Quantifying the effects of temperature and depth of discharge on Li-ion battery heat generation: an assessment of resistance models for accurate thermal behavior prediction, Electrochem. Soc. Meeting Abstracts 244, 445–445 (2023) [CrossRef] [Google Scholar]
  44. G.A.P. Rao, S.S. Kumar, A review of integrated battery thermal management systems for lithium-ion batteries of electric vehicles, e-Prime-Adv. Electr. Eng. Electron. Energy 100526 (2024) [Google Scholar]
  45. H. Wang, Y. Luo, M. Zhou, X. Ren, G. Chen, Accelerated thermal ageing on performance of polypropylene‐based semiconducting screen for high voltage direct current cable applications—Effect of antioxidants, High Voltage (2024) [Google Scholar]
  46. H. Binsalim, S. Badaam, Development of a battery management system for enhancing the performance and safety of lithium-ion battery packs, (2024) [Google Scholar]
  47. H. Pegel, M. Autenrieth, S. Schaeffler, A. Jossen, D.U. Sauer, Design guidelines to prevent thermal propagation and maximize packing density within battery systems with tabless cylindrical lithium-ion cells, J. Energy Storage 86, 111275 (2024) [CrossRef] [Google Scholar]
  48. S.S. Madani, E. Schaltz, S. Knudsen Kær, Simulation of thermal behaviour of a lithium titanate oxide battery, Energies 12, 679 (2019) [Google Scholar]
  49. S. Ma, M. Jiang, P. Tao et al., Temperature effect and thermal impact in lithium-ion batteries: A review, Prog. Nat. Sci. Mater. Int. 28, 653–666 (2018) [Google Scholar]
  50. E. Gümüşsu, Ö. Ekici, M. Köksal, 3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery, Appl. Therm. Eng. 120, 484–495 (2017) [CrossRef] [Google Scholar]
  51. Y. Kobayashi, H. Miyashiro, K. Kumai et al., Precise electrochemical calorimetry of LiCoO2/Graphite lithium-ion cell: understanding thermal behavior and estimation of degradation mechanism, J. Electrochem. Soc. 149, A978 (2002) [CrossRef] [Google Scholar]
  52. A.A. Pesaran, D.J. Russell, J.W. Crawford et al., A unique calorimeter-cycler for evaluating high-power battery modules, Thirteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference, 1998, pp. 127–131 (1998) [Google Scholar]
  53. J.M. Sherfey, Calorimetric determination of half‐cell entropy changes, J. Electrochem. Soc. 110, 213 (1963) [CrossRef] [Google Scholar]
  54. L.G. Guldbæk Karlsen, J. Villadsen, Isothermal reaction calorimeters—I. A literature review, Chem. Eng. Sci. 42, 1153–1164 (1987) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.