Issue
Renew. Energy Environ. Sustain.
Volume 7, 2022
Achieving Zero Carbon Emission by 2030
Article Number 5
Number of page(s) 10
DOI https://doi.org/10.1051/rees/2021051
Published online 06 January 2022
  1. Brazil Ministry of Mines and Energy [Plano Nacional de Energia 2050], Brazil's National Energy Plan 2050 − PNE 2050 (2021). http://antigo.mme.gov.br/web/guest/secretarias/planejamento-e-desenvolvimento-energetico/publicacoes/plano-nacional-de-energia-2050 [Google Scholar]
  2. H.A. Kazem, T. Khatib, K. Sopian, W. Elmenreich, Performance and feasibility assessment of a 1.4 kW roof top grid connected photovoltaic power system under desertic weather conditions, Energy Build. 82, 123–129 (2014) [CrossRef] [Google Scholar]
  3. C. Mokhtara, B. Negrou, N. Settou, A. AbBouferrouk, Y. Yao, Optimal design of grid-connected rooftop PV systems: an overview and a new approach with application to educational buildings in arid climates, Sustain. Energy Technolog. Assess. 47, 101468 (2021) [CrossRef] [Google Scholar]
  4. H.X. Li, Y. Zhang, D. Edwards, M.R. Hosseini, Improving the energy production of roof-top solar PV systems through roof design, Build. Simul. 13, 475–487 (2020) [CrossRef] [Google Scholar]
  5. M. Thebault, V. Clivillé, L. Berrah, G. Desthieux, Multicriteria roof sorting for the integration of photovoltaic systems in urban environments, Sustain. Cit. Soc. 60, 102259 (2020) [CrossRef] [Google Scholar]
  6. H. te Heesen, V. Herbort, M. Rumpler, Performance of roof-top PV systems in Germany from2012 to 2018, Solar Energy 194, 128–135 (2019) [CrossRef] [Google Scholar]
  7. A.H.A. Dehwah, M. Asif, Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates, Renew. Energy 131, 1288–1299 (2019) [CrossRef] [Google Scholar]
  8. K. Sinapis, K. Tsatsakis, M. Dörenkämper, W.G.J.H.M. van Sark, Evaluation and analysis of selective deployment of power optimizers for residential PV systems, Energies 14, 811 (2021) [CrossRef] [Google Scholar]
  9. S.C.S. Costa, A.S.A.C. Diniz, L.L. Kazmerski, Solar energy dust and soiling R&D progress: literature review update for2016, Renew. Sustain. Energy Rev. 82, 2504–2536 (2018) [CrossRef] [Google Scholar]
  10. H.A. Kazem, M.T. Chaichan et al., Evaluation of dust elements on photovoltaic module performance: an experimental study, Renew. Energy Environ. Sustain. J. 6, 2021 (2021) [Google Scholar]
  11. M. Mani, R. Pillai, Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew. Sustain. Energy Rev. 14, 3124–3131 (2010) [CrossRef] [Google Scholar]
  12. T. Sarver, A. Al-Qaraghuli, L.L. Kazmerski, A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches, Renew. Sustain. Energy Rev. 22, 698–733 (2013) [CrossRef] [Google Scholar]
  13. A.A. Kazem, M.T. Chaichan, H.A. Kazem, Dust effect on photovoltaic utilization in Iraq: review article, Renew. Sustain. Energy Rev. 37, 734–749 (2014) [CrossRef] [Google Scholar]
  14. H.A. Kazem, M.T. Chaichan, A.H. Alwaeli, K. Mani, Effect of shadows on the performance of solar photovoltaic, in Mediterranean Green Buildings & Renewable Energy, edited by A. Sayigh (Springer, Cham, 2017) [Google Scholar]
  15. H.A. Kazem, M.T. Chaichan, A.H.A. Al-Waeli, K. Sopian, A.S.K. Darwish, Evaluation of dust elements on photovoltaic module performance: an experimental study, Renew. Energy Environ. Sustain. 6, 30 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  16. D. Bernadette, M. Twizerimana, A. Bakundukize, B. Jean Pierre, N. Theoneste, Analysis of shading effects in solar PV system, Int. J. Sustain. Green Energy 10, 47–62 (2021) [CrossRef] [Google Scholar]
  17. K. Chiteka, R. Arora, S.N. Sridhara, C.C. Enweremadu, Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading on a photovoltaic array, Energy 119289 (2021) [CrossRef] [Google Scholar]
  18. J. Zhou, Z. Ahe, Q. Yi, Temperature distribution and back sheet role of polycrystalline silicon photovoltaic modules, J. Appl. Therm. Eng. 111, 1296–1303 (2017) [CrossRef] [Google Scholar]
  19. S.A.A. dos Santos, J.P.N. Torres, C.A.F. Fernandes, R.A.M. Lameirinhas, The impact of aging of solar cells on the performance of photovoltaic panels, Energy Convers. Manag. X 10, 100082 (2021) [Google Scholar]
  20. H.A. Kazem, M.T. Chaichan, A.H.A. Al-Waeli, K. Sopian, Evaluation of aging and performance of grid-connected photovoltaic system northern Oman: seven years' experimental study, Solar Energy 207, 1247–1258 (2020) [CrossRef] [Google Scholar]
  21. J. Kim, M. Rabelo, S.P. Padi, H. Yousuf, E.-C. Cho, J. Yi, A review of the degradation of photovoltaic modules for life expectancy, Energies 14, 4278 (2021) [CrossRef] [Google Scholar]
  22. G. Pillai, A. Radity, M. Mani, P. Ramamurthy, Cell (module) temperature regulated performance of a building integrated photovoltaic system in tropical conditions, Renew. Energy 72, 140–148 (2014) [CrossRef] [Google Scholar]
  23. S.C.S. Costa, L.L. Kazmerski, A.S.A.C. Diniz, Impact of soiling on Si and CdTe PV modules: case study in different Brazil climate zones, Energy Convers. Manag. 10, 100084 (2021) [Google Scholar]
  24. R. Ruther, R. do Nascimento, R.A. Campos, Performance assessment issues in utility-scale photovoltaics in warm and sunny climates, Renew. Energy Environ. Sustain. 2, 35–41 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  25. G.D. Buchan, Analytic modelling of solar radiation: driven temperature variations of outdoor surfaces, Appl. Math. Modelling. (1986). https://www.sciencedirect.com/science/article/pii/0307904×8690020X [Google Scholar]
  26. F. Ghani et al., On the influence of temperature on crystalline silicon solar cell characterisation parameters, Solar Energy 112, 437–445 (2015) [CrossRef] [Google Scholar]
  27. J.H. Jo, T.P. Otanicar, A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems, Renew. Energy 36, 2992–3000 (2011) [CrossRef] [Google Scholar]
  28. J.A. Kratochvil, W.E. Boyson, D.L. King, Photovoltaic Array Performance Model, Vol. 8. Sandia National Laboratory, Albuquerque, NM, and Livermore, CA, 2004. https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/point-value-models/sandia-pv-array-performance-model/ [Google Scholar]
  29. L.W. Zhe, I.B. Yusoff, M.I. Misrun, A.B.A. Razak, S. Ibrahim, N.S.B. Zhubir, Investigation of solar panel performance based on different wind velocity using ANSYS, Indon. J. Electr. Eng. Comput. Sci. 1, 456–463 (2016) [Google Scholar]
  30. J.C. Zhou et al., Temperature distribution and back sheet role of polycrystalline silicon photovoltaic modules, Appl. Thermal Eng. 111, 1296–1303 (2016) [Google Scholar]
  31. S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions, Appl. Therm. Eng. 30, 1488–1495 (2010) [CrossRef] [Google Scholar]
  32. B. Tuncel, T. Ozden, R.S. Balog et al., Dynamic thermal modelling of PV performance and effect of heat capacity on the module temperature, Case Stud. Therm. Eng. 22, 100754 (2020) [Google Scholar]
  33. L.D. Torres, S. Valkealahti, Dynamic thermal model of solar PV systems under varying climatic conditions, Solar Energy 93, 183–194 (2013) [CrossRef] [Google Scholar]
  34. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations, Solar Energy 83, 614–624 (2008) [Google Scholar]
  35. A.S. Vaka, P. Talukdar, Novel inverse heat transfer technique for estimation of properties and location- specific process parameters of roof-mounte solar PV plants, Therm. Sci. Eng. Progr. 19, 100657 (2020) [CrossRef] [Google Scholar]
  36. A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Cell Conversion, Academic Press, New York (1983) [Google Scholar]
  37. S. Chander et al., A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature, Energy Reports 1, 104–109 (2015) [CrossRef] [Google Scholar]
  38. Manufacturer's specifications sheets [Google Scholar]
  39. H.-F. Tsai, H.-L. Tsai, Implementation and verification of integrated thermal and electrical models for commercial PV modules, Solar Energy 86, 654–665 (2012) [CrossRef] [Google Scholar]
  40. A.P.C. Guimarães, Estudo solarimétrico com base na definição de mês padrão e sequência de radiação diária, Dissertação (Mestrado). Universidade Federal de Minas Gerais − Curso de Pós-Graduação em Engenharia Mecânica, 1995 [Google Scholar]
  41. R.S. Balog, Y. Kuai, G. Uhrhan, A photovoltaic module thermal model using observed insolation and meteorological data to support a long life, highly reliable module-integrated inverter design by predicting expected operating temperature, in 2009 IEEE Energy Convers. Congr. Expo. ECCE 2009, IEEE (2009) pp. 3343–3349 [CrossRef] [Google Scholar]
  42. A. Bejan, A.D. Kraus, Heat Transfer Handbook, McGraw Hill, New York (2003), vol. 1 [Google Scholar]
  43. GREEN PUC Minas (Grupo de Estudos em Energia PUCMinas). https://ipuc.pucminas.br/green/index.html [Google Scholar]
  44. F.P. Incropera, Fundamentals of Heat and Mass Transfer, John Wiley, New York (2007) [Google Scholar]
  45. H.C. Hottel, A.F. Sarofim, Radiative Transfer, McGraw Hill Book Company, New York (1967) [Google Scholar]
  46. M. Malinek, P. Kotoulek, A. Petrovic, T. Regrit, M. Bozikova, P. Hlavac, V. Cviklovic, M. Olejar, Modelling of photovoltaic module convective heat transfer coefficient, MendelNet 2016, 877–882 (2016) [Google Scholar]
  47. A.D. Jones, C.P. Underwood, A thermal model for photovoltaic systems, Solar Energy 70, 349–359 (2001) [CrossRef] [Google Scholar]
  48. ABNT, Desempenho térmico de edificações Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Brazil (2004) [Google Scholar]
  49. A. Dominguez, J. Kleissl, J.C. Luvall, Effects of solar photovoltaic panels on roof heat transfer, Solar Energy 85, 2244–2255 (2011) [CrossRef] [Google Scholar]
  50. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, 3rd edn., John Wiley & Sons, New York (2006) [Google Scholar]
  51. Energy Equation Solver (EES) software is a general equatin-solving program that can numberically solve multiple coupled non-linear algebraic and differential equations. https://ees-64-bit-engineering-equation-solver.software.informer.com [Google Scholar]
  52. R. DeGunther, Mounting solar panels, in Solar Power your Home for Dummies, 2nd ed. (Wiley, 2020) https://www.dummies.com/home-garden/green-living/energy-sources/mounting-equipment-for-solar-panels [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.