Issue
Renew. Energy Environ. Sustain.
Volume 6, 2021
Achieving Zero Carbon Emission by 2030
Article Number 25
Number of page(s) 14
DOI https://doi.org/10.1051/rees/2021024
Published online 02 August 2021
  1. E.-J. Quak, The cost benefits of lighting and electricity services for off-grid populations in Sub-Saharan Africa', A case study from K4D Helpdesk Report, Institute of Development Studies, Brighton, UK (2018) [Google Scholar]
  2. IRENA, Off-grid renewable energy solutions to expand electricity access: an opportunity not to be missed', International Renewable Energy Agency, Abu Dhabi, UAE, 2019 [Google Scholar]
  3. M.C. Pacis, J.T. Sese, H.A. Blastique, M.D.C. Casibang, Metering of Surplus Energy on PV Systems using Zigbee wireless technology, in 6th IEEE International Conference on Control Systems, Computing and Engineering, Penang, Malaysia, 27th Nov 2016 [Google Scholar]
  4. IRENA, Off-grid renewable energy solutions: Global and regional status and trends. IRENA, Abu Dhabi, UAE, 2018 [Google Scholar]
  5. H. Lestari, M. Arentsen, H. Bresseers, Sustainability of renewable off-grid technology for rural electrification: a comparative study using the LAD framework, Sustainability (2018) [Google Scholar]
  6. S. Feron, Sustainability of off-grid photovoltaic systems for rural electrification in developing countries: a review, Sustainability (2016) [Google Scholar]
  7. D. Palit, A. Chaurey, Off-grid rural electrification experiences from South Asia: status and best practices, Energy Sustain. Dev. (2021) [Google Scholar]
  8. R. Kosonen, C. Heron, E. Marckx, Using batteries to ensure clean, reliable and affordable universal electricity access: a guide for energy decision makers, Alliance for Rural Electrification − Position paper, Energy Storage Campaign (2013) [Google Scholar]
  9. K. Berzina, I. Zicmane, A. Sobolevkis, Optimal PV electrical energy storage of Building's communal space lighting, Conference IEEE International Conference on Environment and Electrical Engineering and2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/ I&CPS Europe); doi: 10.1109/EEEIC.2017.7977582 [Google Scholar]
  10. A.H. Khan, A. Islam, M. Islam, M. Saifur Rahman, A systematic approach to find the optimal tilt angle for meeting the maximum energy demand of an isolated area, in 2nd International Conference on Electrical Engineering and Information on Communication Technology (ICEEICT), 2015 [Google Scholar]
  11. Poor People's Energy Outlook 2019: Enabling energy access: from village to nation, Practical Action, 2019 [Google Scholar]
  12. A.A. Eras-Almeida, M. Fernandez, J. Eisman, J.G. Martin, E. Caamano, M.A. Egido-Aguilera, Lessons learned from Rural Electrification Experiences with Third Generation Solar Home Systems in Latin America: Case Studies in Peru, Mexico and Bolivia' Sustainability 11, 7139 (2019) [CrossRef] [Google Scholar]
  13. S. Tesema, G. Bekele, Resource assessment and optimisation study of efficient type hybrid power system for electrification of Rural District in Ethiopia, Int. J. Energy Power Eng. (2015) [Google Scholar]
  14. S.A. Chowdhury, M. Mourshed, Off-grid electrification with solar home systems: an appraisal of the quality of components, Renew. Energy 97, 585–598 (2016) [CrossRef] [Google Scholar]
  15. P.J.M. Thomas, P. Sandwell, S.J. Williamson, P.W. Harper, A PESTLE analysis of solar home systems in refugee camps in Rwanda, Renew. Sustain. Energy Rev. 143 (2021) [Google Scholar]
  16. J. Urpelainen, S. Yoon, Solar products for poor rural communities as a business: lessons from a successful project in Uttar Pradesh, India, Clean Techn Environ Policy 18, 617–626 (2016) [CrossRef] [Google Scholar]
  17. M. Barman, S. Mahapatra, D. Palit, M.K. Chaudhury, Performance and impact evaluation of solar home lighting systems on the rural livelihood in Assam, India, Energy Sustain. Dev. 38, 10–20 (2017) [CrossRef] [Google Scholar]
  18. Y.A. Munoz Maldonado, C.E. Vera Suarez, M. de los Angeles Pinto Calderon, System for performance assessment of Solar home systems, Industry 4.0 for Energy, Water, Air and Biorefineries; doi: 10.16925/ecam.03 [Google Scholar]
  19. M. Nasir, M. Anees, H.A. Khan, I. Khan, Y. Xu, J.M. Guerrero, Integration and decentralized control of standalone solar home systems for off-grid community applications, IEEE Trans. Ind. Appl. 55, 7240–7250 (2019) [CrossRef] [Google Scholar]
  20. Availability of Solar data, https://creativenergie.co.uk (accessed Dec 2020) [Google Scholar]
  21. Solar data raw form, https://connectedenergy.net/cloud-solar (accessed Jan 2021) [Google Scholar]
  22. Solar irradiance values from NASA, https://power.larc.nasa.gov/data-access-viewer/ (accessed Jan 2021) [Google Scholar]
  23. Solar irradiance values from Solcast, https://solcast.com (accessed Jan 2021) [Google Scholar]
  24. Information related to the additional loads at https://www.lightingglobal.org/wp-content/uploads/2019/09/PULSE-Report.pdf (accessed April 2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.