Open Access
Issue |
Renew. Energy Environ. Sustain.
Volume 6, 2021
Achieving Zero Carbon Emission by 2030
|
|
---|---|---|
Article Number | 27 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/rees/2021026 | |
Published online | 16 August 2021 |
- European Commission, Stepping up Europe's 2030 Climate Ambition − Investigating in a Climate-Neutral Future for the Benefit of our People, Brussels, 17.09.2020 [Google Scholar]
- P. Pinel, C.A. Cruickshank, I. Beausoleil-Morrison, A. Wills, A review of available methods for seasonal storage of solar thermal energy in residential applications, Renew. Sustain. Energy Rev. 15, 3341–3359 (2011) [CrossRef] [Google Scholar]
- G. Krese, R. Kozelj, V. Butala, U Stritih, Thermochemical seasonal solar energy storage for heating and cooling of buildings, Energy Build. 164, 239–253 (2018) [CrossRef] [Google Scholar]
- D. Aydin, S.P. Casey, S. Riffat, The latest advancements on thermochemical heat storage systems, Renew. Sustain. Energy Rev. 41, 356–367 (2015) [CrossRef] [Google Scholar]
- Y. Zhang, R. Wang, Sorption thermal energy storage: concept, process, applications and perspectives, Energy Storage Mater. 27, 352–369 (2020) [CrossRef] [Google Scholar]
- B. Zettl, G. Englmair, G. Steinmaurer, Development of a revolving drum reactor for open-sorption heat storage processes, Appl. Therm. Eng. 70, 42–49 (2014) [CrossRef] [Google Scholar]
- B. Zettl, H. Kirchsteiger, An open sorption heat storage application, in Proc. Int. Sustainable Energy Conference, Graz, Austria, 2018, pp. 605–611 [Google Scholar]
- F. Fischer, W. Lutz, J.C. Buhl, E. Laevemann, Insights into the hydrothermal stability of zeolite 13X, Micropor. Mesopor. Mater. 262, 258–268 (2018) [CrossRef] [Google Scholar]
- B. Fumey, R. Weber, L. Baldini, Sorption based long-term energy storage − process classification and analysis of performance limitations: a review, Renew. Sustain. Energy Rev. 111, 57–74 (2019) [CrossRef] [Google Scholar]
- D.D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998) [CrossRef] [Google Scholar]
- G. Engel, S. Asenbeck, R. Köll, H. Kerskes, W. Wagner, W. van Helden, Simulation of a seasonal, solar-driven sorption storage heating system, J. Energy Storage 13, 40–47 (2017) [CrossRef] [Google Scholar]
- N. Daborer-Prado, Modeling and Simulation of an Innovative Domestic Sorption Storage System, M.S. Thesis, University of Applied Sciences Upper Austria, Wels, Austria, 2019 [Google Scholar]
- B. Mette, H. Kerskes, H. Drück, Experimental and numerical investigations of different reactor concepts for thermochemical energy storage, Energy Proc. 57, 2380–2389 (2014) [CrossRef] [Google Scholar]
- L. Scapino, H.A. Zondag, J. Diriken, C.C.M. Rindt, J. van Bael, A. Sciacovelli, Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks, Appl. Energy 253, 113525 (2019) [CrossRef] [Google Scholar]
- The MathWorks, R2019a, System Identification Toolbox, Natick, Massachusetts, US [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.