Open Access
Issue
Renew. Energy Environ. Sustain.
Volume 6, 2021
Article Number 11
Number of page(s) 12
DOI https://doi.org/10.1051/rees/2021013
Published online 19 April 2021
  1. Gianpaolo Vitale, Renewable energies − future perspectives renewable, Energy Environmental Sustainability 1, 17 (2016) [Google Scholar]
  2. https://www.energy.gov.dz/?rubrique=energies-nouvelles-renouvelables-et-maitrise-de-lrenergie [Google Scholar]
  3. M.A. Dos Santos Bernardes, Solar chimney power plants-developments and advancements, INTECH Open Access Publisher, 2010 [Google Scholar]
  4. W. Haaf, K. Friedrich, G. Mayr, J. Schlaich, Solar chimneys, part I: principle and construction of the pilot plant in Manzanares, Int. J. Solar Energy 2, 3–20 (1983) [Google Scholar]
  5. W. Haaf, Solar chimneys, part II: preliminary test results from the Manzanares pilot plant, Int. J. Solar Energy 2, 141–161 (1984) [Google Scholar]
  6. J. Schlaich, The Solar Chimney (Axel Menges Edition, Stuttgart, Germany, 1995) [Google Scholar]
  7. J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of commercial solar tower systems − utilization of solar induced convective flows for power generation, in: Proceedings of the International Solar Energy Conference, Kohala Coast, United States, 573–581 (2003) [Google Scholar]
  8. J. Schlaich, W. Schiel, Solar Chimneys, Encyclopedia of Physical Science and Technology 3, 99–109 (2004) [Google Scholar]
  9. Y.L. Wei, Z.K. Wu, Shed absorbability and tower structure characteristics of the solar heated wind updraft tower power, in: 3rd International Conference on Solar Updraft Tower Technology, Huazhong University Of Science And Technology, Wuhan, China, 1–12 (2012) [Google Scholar]
  10. M. Najmi, A. Nazari, H. Mansouri, G. Zahedi, Feasibility study on optimization of a typical solar chimney power plant, Heat Mass Transfer 48, 475–485 (2012) [Google Scholar]
  11. S.M. Boualleg, S. Larbi, Analyse des performances énergétiques des centrales cheminées solaires par utilisation de différents modèles mathématiques. ENP (2012). www.pnst.cerist.dz/detail.php?id=68739 [Google Scholar]
  12. D. Eryener, J. Hollick, H. Kuscu, Thermal performance of a transpired solar collector updraft tower, Energy Conversion and Management 142, 286–295 (2017) [Google Scholar]
  13. D. Eryener, H. Kuscu, Hybrid transpired solar collector updraft tower, Solar Energy 159, 561–571 (2018) [Google Scholar]
  14. A. Ayadi, A. Bouabidi, Z. Driss, M. Salah Abid, Experimental and numerical analysis of the collector roof height effect on the solar chimney performance, Renewable Energy 115, 649–662 (2018) [Google Scholar]
  15. A.B. Molana Sh., K. Rahmani, D. Wen, A review on solar chimney systems, Renewable and Sustainable Energy Reviews 67, 954–987 (2017) [Google Scholar]
  16. P. Guoa, T. Li, B. Xu, X. Xuc, J. Li, Questions and current understanding about solar chimney power plant: a review, Energy Conversion and Management 182, 21–33 (2019) [Google Scholar]
  17. H.H. Al-Kayiem, M.A. Aurybi, S.I.U. Gilani, A.A. Ismaeel, S. T. Mohammad, Performance evaluation of hybrid solar chimney for uninterrupted power generation, Energy 166, 490–505 (2019) [Google Scholar]
  18. H. Nasraoui, Z. Driss, H. Kchaou, Novel collector design for enhancing the performance of solar chimney power plant, Renewable Energy 145, 1658–1671 (2020) [Google Scholar]
  19. S. Jamali, A. Nemati, F. Mohammadkhani, M. Yari, Thermal and economic assessment of a solar chimney cooled semitransparent photovoltaic (STPV) power plant in different climates, Solar Energy 185, 480–493 (2019) [Google Scholar]
  20. S. Hossein Fallah, M. Sadegh Valipour, Evaluation of solar chimney power plant performance: the effect of artificial roughness of collector, Solar Energy 188, 175–184 (2019) [Google Scholar]
  21. A. Asghar Sedighi, Z. Deldoost, B. Mahjoob Karambasti, Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop, Energy 194, 116–859 (2020) [Google Scholar]
  22. G. Papadakis, D. Briassoulis, G. Scarascia Mugnozza, G. Vox, P. Feuilloley, J.A. Stoffers, Radiometric and thermal properties of, and testing methods for, greenhouse covering materials, J. Agric. Eng. Res. 77, 7–38 (2000) [Google Scholar]
  23. A. Dehbi, A.-H.I. Mourad, Durability of mono-layer versus tri-layers LDPE films used as greenhouse cover: comparative study, Arab. J. Chem. 9, S282–S289 (2016) [Google Scholar]
  24. P.A. Dilara, D. Briassoulis, Standard testing methods for mechanical properties and degradation of Low Density Polyethylene (LDPE) films used as greenhouse covering materials: a critical evaluation, Polym. Test. 17, 549–585 (1998) [Google Scholar]
  25. P. Nicaud, Les Matière Plastiques. Projet Troisième Rob'Ok, Hachette Multimédia (2007) [Google Scholar]
  26. R. Irinislimane, N. Belhaneche-Bensemra, A. Benlefki, Valorization of regenerated LDPE by blending with EPDM in the presence of peroxide, J. Polym. Environ. 15, 119–124 (2007) [Google Scholar]
  27. A.A. Babaghayou, I.M. Chabira, S.F. Sebaa, M., Impact of solar radiation effects on the physicochemical properties of Polyethylene (PE) plastic film, Soc. Behav. Sci. 195, 2210–2217 (2015) [Google Scholar]
  28. Recueil de normes ISO21-TOM1 & TOM2, Plastiques: Technologie-échantillonnage et propriétés, 1984 (Recueil de normes ISO 21, 1984) [Google Scholar]
  29. S. Füzesséry, Polyéthylènes basse densité PEBD. Techniques de l'ingénieur, Novembre 1983 [Google Scholar]
  30. L.B. Mullett, The solar chimney overall efficiency, design and performance, Int. J. Ambient Energy 8, 35–40 (1987) [Google Scholar]
  31. A. Koonsrisuk, T. Chitsomboon, Mathematical modelling of solar chimney power plants, Energy 51, 314–322 (2013) [Google Scholar]
  32. D. Yogi Goswami, Principles of solar engineering Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, USA [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.