Open Access
Renew. Energy Environ. Sustain.
Volume 5, 2020
Article Number 11
Number of page(s) 12
Published online 15 December 2020
  1. S.C. Cheng, Y.C. Chang, Y.L.F. Chiang, Y.C. Chien, M. Cheng, C.H. Yang, C.H. Huang, Y.N. Hsu, First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan, J. Formos. Med. Assoc. (2020). [Google Scholar]
  2. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report-209. [Google Scholar]
  3. C. Xu, X. Wei, L. Liu, L. Su, W. Liu, Y. Wang, P.V. Nielsen, Effects of personalized ventilation interventions on airborne infection risk and transmission between occupants, Build. Environ. 180, 107008 (2020) [CrossRef] [Google Scholar]
  4. M.A. Kohanski, L.J. Lo, M.S. Waring, Review of indoor aerosol generation, transport and control in the context of COVID‐19, Int. Forum Allergy Rhinol. (2020). [Google Scholar]
  5. T. Jin, J. Li, J. Yang, J. Li, F. Hong, H. Long, Q. Song, SARS-CoV-2 presented in the air of an intensive care unit (ICU), Sustain. Cities Soc. 102446 (2020) [CrossRef] [Google Scholar]
  6. N.A. Megahe, E.M. Ghoneim, Antivirus-built environment: lessons learned from Covid-19 pandemic, Sustain. Cities Soc. 61, 102350 (2020) [Google Scholar]
  7. G. Correia, L. Rodrigues, M.G. Silva, T. Gonçalves, Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission, Med. Hypotheses 109781 (2020) [CrossRef] [Google Scholar]
  8. L. Morawaska, J.W. Tang, W. Bahnfleth, P.M. Bluyssen, A. Boerstra, G. Buonanno, C. Haworth, How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. (2020). [Google Scholar]
  9. X.Y. Ge, Y. Pu, C.H. Liao, W.F. Huang, Q. Zeng, H. Zhou, H.L. Chen, Evaluation of the exposure risk of SARS-CoV-2 in different hospital environment, Sustain. Cities Soc. 61, 102413 (2020) [CrossRef] [Google Scholar]
  10. M. Bojić, D. Cvetković, L. Bojić, Decreasing energy use and influence to environment by radiant panel heating using different energy sources, Appl. Energy 138 , 404–413 (2015) [CrossRef] [Google Scholar]
  11. J. Romaní, G. Pérez, A. de Gracia, Experimental evaluation of a heating radiant wall coupled to a ground source heat pump, Renew. Energy 105 , 520–529 (2017) [CrossRef] [Google Scholar]
  12. V. Golkarfard, P. Talebizadeh, Numerical comparison of airborne particles deposition and dispersion in radiator and floor heating systems, Adv. Powder Technol. 25 , 389–397 (2014) [CrossRef] [Google Scholar]
  13. Y. Man, H. Yang, J.D. Spitler, Z. Fang, Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings, Appl. Energy 88 , 4160–4171 (2011) [CrossRef] [Google Scholar]
  14. S. Xu, R Ding, J. Niu, G. Ma, Investigation of air-source heat pump using heat pipes as heat radiator, Int. J. Refrig. 90 , 91–98 (2018) [CrossRef] [Google Scholar]
  15. K. Kerrigan, H. Jouhara, G.E. O'Donnell, A.J. Robinson, Heat pipe-based radiator for low grade geothermal energy conversion in domestic space heating, Simul. Model. Pract. Theory 19 , 1154–1163 (2011) [CrossRef] [Google Scholar]
  16. S. Shao, H. Zhang, S. You, W. Zheng, L. Jiang, Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system, Appl. Energy 247 , 78–88 (2019) [CrossRef] [Google Scholar]
  17. A. Hasan, J. Kurnitski, K. Jokiranta, A combined low temperature water heating system consisting of radiators and floor heating, Energy Build. 41 , 470–479 (2009) [CrossRef] [Google Scholar]
  18. J.A. Myhren, S. Holmberg, Flow patterns and thermal comfort in a room with panel, floor and wall heating, Energy Build. 40 , 524–536 (2008) [CrossRef] [Google Scholar]
  19. B. Kilkis, Exergy metrication of radiant panel heating and cooling with heat pumps, Energy Convers. Manag. 63 , 218–224 (2012) [CrossRef] [Google Scholar]
  20. U. Akbulut, Z. Utlu, O. Kincay, Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system, Appl. Therm. Eng. 102 , 904–921 (2016) [CrossRef] [Google Scholar]
  21. Q. Zhang, L. Zhang, J. Nie, Y. Li, Techno-economic analysis of air source heat pump applied for space heating in Northern China, Appl. Energy 207 , 533–542 (2017) [CrossRef] [Google Scholar]
  22. H. Boughanmi, M. Lazaar, S. Bouadila, A. Farhat, Thermal performance of a conic basket heat exchanger coupled to a geothermal heat pump for greenhouse cooling under Tunisian climate, Energy Build. 104 , 87–96 (2015) [CrossRef] [Google Scholar]
  23. N. Naili, M. Hazami, I. Attar, A. Farhat, Assessment of surface geothermal energy for air conditioning in northern Tunisia: direct test and deployment of ground source heat pump system, Energy Build. 111 , 207–217 (2016) [CrossRef] [Google Scholar]
  24. N. Naili, M. Hazami, I. Attar, A. Farhat, In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia, Energy 61 , 319–331 (2013) [CrossRef] [Google Scholar]
  25. ASHRAE A, Standard 55-2004 Thermal environmental conditions for human occupancy (American Society of Heating Refrigerating and Air-Conditioning Engineers Inc, Atlanta, 2004) [Google Scholar]
  26. H. Zhang, L. Jiang, W. Zheng, S. You, T. Jiang, S. Shao, X. Zhu, Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system, Build. Environ. 164 , 106341 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.