Open Access
Review
Issue
Renew. Energy Environ. Sustain.
Volume 5, 2020
Article Number 2
Number of page(s) 7
DOI https://doi.org/10.1051/rees/2019011
Published online 24 January 2020
  1. Moroccan Agency for the Development of Renewable Energies and Energy Efficiency (ADEREE), Règlement Thermique de Construction au Maroc. 2014, www.adree.ma [Google Scholar]
  2. M. Ouakarrouch, K. El Azhary, N. Laaroussi, M. Garoum, A. Feiz, Three-dimensional numerical simulation of conduction, natural convection, and radiation through alveolar building walls, Case Studies Constr. Mater. 11, e00249 (2019) [Google Scholar]
  3. N. Laaroussi, G. Lauriat, S. Raefat, M. Garoum, M. Ahachad, An example of comparison between ISO Norm calculations and full CFD simulations of thermal performances of hollow bricks, J. Build. Eng. 11, 69–81 (2017) [CrossRef] [Google Scholar]
  4. F. Asdrubali, F. D'Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials, Sustain. Mater. Technol. 4, 1–17 (2015) [Google Scholar]
  5. M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, F.A. Nouh, Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date-palm fibers mesh, Constr. Build. Mater. 135, 241–250 (2017) [CrossRef] [Google Scholar]
  6. J. Khedari, B. Suttisonk, N. Pratinthong, J. Hirunlabh, New lightweight composite construction materials with low thermal conductivity, Cem. Concr. Compos. 23, 65–70 (2001) [CrossRef] [Google Scholar]
  7. B. Belhadj, M. Bederina, Z. Makhloufi, A. Goullieux, M. Quéneudec, Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment, Energy Build. 87, 166–75 (2015) [CrossRef] [Google Scholar]
  8. P. Ricciardi, E. Belloni, F. Cotana, Innovative panels with recycled materials: thermal and acoustic performance and life cycle assessment, Appl. Energy 134, 150–162 (2014) [CrossRef] [Google Scholar]
  9. M. Ouakarrouch, K. El Azhary, M. Mansour, N. Laaroussi, M. Garoum, Thermal study of clay bricks reinforced by sisal-fibers used in construction in South of Morocco, Energy Reports, 2019 [Google Scholar]
  10. M. Ouakarrouch, F. Kifani-Sahban, N. Laaroussi, M. Garoum, S. M. Layakhaf, Thermal Insulation and Operation by Photovoltaic Solar Energy of a Bioreactor, in 2018 IEEE 6th International Renewable and Sustainable Energy Conference (IRSEC), 1–5 [Google Scholar]
  11. V. Srivatsav, C. Ravishankar, M. Ramakarishna, Y. Jyothi, T. N. Bhanuparakash, Mechanical and thermal properties of chicken feather reinforced epoxy composite, AIP Conf. Proc. 1992, 040034 (2018) [CrossRef] [Google Scholar]
  12. T. Subramani, S. Krishnan, S. K. Ganesan, G. Nagarajan, Investigation of mechanical properties in polyester and phenylester composites reinforced with chicken feather fiber, Int. J. Eng. Res. Appl. 4, 93–104 (2014) [Google Scholar]
  13. M.N. Acda, Waste chicken feather as reinforcement in cement-bonded composites, Philipp. J. Sci. 139, 161–166 (2010) [Google Scholar]
  14. E.S.A. Wahab, S.F.C. Osmi, Mechanical properties of concrete added with chicken rachis as reinforcement, Appl. Mech. Mater. 147, 37–41 (2012) [CrossRef] [Google Scholar]
  15. M.M. El-Hawary, S.A. Hamoush, Feather fiber reinforced concrete, Concr. Int. 16, 33–35 (1994) [Google Scholar]
  16. P. Staron, M. Banach, Z. Kowalski, Keratin-origins, properties, application, Chemik. 65, 1019–1026 (2011) [Google Scholar]
  17. T. Zhang, E. Dieckmann, S. Song, J. Xie, Z. Yu, C. Cheeseman, Properties of magnesium silicate hydrate (MSH) cement mortars containing chicken feather fibres, Constr. Build. Mater. 180, 692–697 (2018) [CrossRef] [Google Scholar]
  18. T. Tesfaye, B. Sithole, D, Ramjugernath, T. Mokhothu, Valorisation of chicken feathers: Characterisation of thermal, mechanical and electrical properties, Sustain. Chem. Pharm. 9, 27–34 (2018) [CrossRef] [Google Scholar]
  19. The Interprofessional Federation of the Poultry Sector in Morocco [Google Scholar]
  20. Y. Jannot, A. Degiovanni, Thermal properties measurement of materials, ISTE edn. (John Wiley & Sons, New Jersey, 2018) [CrossRef] [Google Scholar]
  21. S. Raefat, M. Garoum, N. Laaroussi, et al. Thermal diffusivity and adiabatic limit temperature characterization of consolidate granular expanded perlite using the flash method, IOP Conf. Ser. Mater. Sci. Eng. 222, 012004 (2017) [Google Scholar]
  22. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Appl. Math. 11, 431–441 (1963) [Google Scholar]
  23. A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, O. Oussouaddi, Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study, J. Clean. Prod. 209, 1411–1419 (2019) [CrossRef] [Google Scholar]
  24. A. Cherki, A. Khabbazi, B. Remy, D. Baillis, Granular cork content dependence of thermal diffusivity, thermal conductivity and heat capacity of the composite material/granular cork bound with plaster, Energy Procedia 42, 83–92 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.