Open Access
Review
Issue
Renew. Energy Environ. Sustain.
Volume 4, 2019
Article Number 9
Number of page(s) 6
DOI https://doi.org/10.1051/rees/2019006
Published online 13 August 2019
  1. F. Kuznik, J. Virgone, J. Noel, Optimization of a phase change material wallboard for building use, Appl. Therm. Eng. 28 , 1291–1298 (2008) [CrossRef] [Google Scholar]
  2. K. Ismail, J. Castro, PCM thermal insulation in buildings, Int. J. Energy Res. 21 , 1281–1296 (1997) [CrossRef] [Google Scholar]
  3. R. Baetens, B. Jelle, A. Gustavsend, Phase change materials for building applications: a state-of-the-art review, Energy Build 42 , 1361–1368 (2010) [CrossRef] [Google Scholar]
  4. M. Farid, X. Chen, Domestic electric space heating with heat storage, Proc. Inst. Mech. Eng. 213 , 83–92 (1999) [CrossRef] [Google Scholar]
  5. A. Regin, S. Solanki, J. Saini, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review, Renew. Sust. Energy Rev. 12 , 2438–2458 (2008) [CrossRef] [Google Scholar]
  6. M. Amar, M. Mohamed, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Convers. Manag. 45 , 263–275 (2004) [CrossRef] [Google Scholar]
  7. H. Garg, S. Mullick, A. Bhargava, Solar Thermal Energy Storage (D. Reidel Publishing Co, Dordrecht, Holland, 1985) [CrossRef] [Google Scholar]
  8. S. Hasnain, Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques, Energy Convers. Manag. 39 , 1127–1138 (1998) [CrossRef] [Google Scholar]
  9. D. Hawes, D. Banu, D. Feldman, Latent heat storage in concrete II, Solar Energy Mater. 21 , 61–80 (1990) [CrossRef] [Google Scholar]
  10. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg/Germany, 2002 [Google Scholar]
  11. D. Hawes, D. Feldman, Absorption of phase change materials in concrete, Solar Energy Mater. Solar Cells 27 , 91–101 (1992) [CrossRef] [Google Scholar]
  12. L. Cabeza, M. Medrano, C. Castellón, A. Castell, J. Roca, Thermal energy storage with phase change materials in building envelopes, Contrib. Sci. 3 , 501–510 (2007) [Google Scholar]
  13. L. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build. 39 , 113–119 (2007) [CrossRef] [Google Scholar]
  14. M. Hunger, A. Entrop, I. Mandilaras, H. Brouwers, M. Founti, The behavior of self-compacting concrete containing micro-encapsulated phase change materials, Cement Concr. Compos. 31 , 731–743 (2009) [CrossRef] [Google Scholar]
  15. L. Tung-Chai, P. Chi-Sun, Use of phase change materials for thermal energy storage in concrete: an overview, Constr. Build. Mater. 46, 55–62 (2013) [Google Scholar]
  16. T. Lee, D. Hawes, D. Banu, Feldman, Control aspects of latent heat storage and recovery in concrete, Solar Energy Mater. Solar Cells 62 , 217–237 (2000) [CrossRef] [Google Scholar]
  17. A. Jeanjean, R. Olives, X. Py, Selection criteria of thermal mass materials for low-energy building construction applied to conventional and alternative materials, Energy Build. 63 , 36–48 (2013) [CrossRef] [Google Scholar]
  18. D. Hawes, Latent Heat Storage, Ph.D. Thesis, Concordia University, 1991, p. 79 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.