Open Access
Renew. Energy Environ. Sustain.
Volume 1, 2016
Article Number 1
Number of page(s) 6
Published online 16 May 2016
  1. D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power, Sol. Energy Mater. Sol. Cells 95, 2703 (2011) [CrossRef]
  2. M. Epstein, I. Vishnevetsky, A. Segal, R. Rubin, D. Lieberman, Research and development in the Solar Research Facilities Unit of the Weizmann Institute of Science: past, present and future, Int. J. Environ. Sustain. 9, 97 (2014) [CrossRef]
  3. M. Epstein, D. Lieberman, M. Rosh, A. Shor, Solar testing of 2 MW water/steam receiver at the Weizmann Institute Solar Tower, Sol. Energy Mater. 24, 265 (1991) [CrossRef]
  4. A. Segal, WISDOM—Weizmann Institute Solar Dedicated cOmprehensive Mastercode, in Proceedings of the Solar 96 ASES Annual Conference, Asheville, NC 308 (1996)
  5. M. Epstein, Solar tests of a ceramic tubes receiver at the Weizmann Institute of Science Solar Research Facilities: Status report, in Proceeding of the 4th International Symposium on Solar Thermal Technology: Research, Development and Applications, Santa Fe, NM (Hemisphere Pub. Co., New York, 1988), 231
  6. M. Levy, R. Levitan, H. Rosin, R. Rubin, Solar energy storage via a closed-loop chemical heat pipe, Sol. Energy 50, 179 (1993) [CrossRef]
  7. A. Segal, M. Epstein, Solar ground reformer, Sol. Energy 75, 479 (2003) [CrossRef]
  8. A. Berman, K.K. Rakesh, M. Epstein, A new catalyst system for high-temperature solar reforming of methane, Energy Fuels 20, 455 (2006) [CrossRef]
  9. R. Adinberg, D. Zvegilsky, M. Epstein, Heat transfer efficient thermal energy storage for stem generation, Energy Convers. Manag. 51, 9 (2010) [CrossRef]
  10. I. Vishnevetsky, A. Berman, M. Epstein, Features of solar thermochemical redox cycles for hydrogen production from water as a function of reactants’ main characteristics, Int. J. Hydrog. Energy 36, 2817 (2011) [CrossRef]
  11. C. Wieckert, U. Frommherz, S. Kraupl, E. Guillot, G. Olalde, M. Epstein, S. Santen, T. Osinga, A. Steinfeld, A 300-kW solar chemical pilot plant for the carbothermal production of zinc, J. Sol. Energy Eng. 129, 190 (2007) [CrossRef]
  12. M. Kogan, A. Kogan, Production of hydrogen and carbon by solar thermal methane splitting, Int. J. Hydrog. Energy 28, 1187 (2003) [CrossRef]
  13. J. Karni, A. Kribus, P. Doron, R. Rubin, A. Fiterman, D. Sagie, The DIAPR: a high-pressure, high temperature solar receiver, J. Sol. Energy Eng. 119, 74 (1997) [CrossRef]
  14. J.J. O’Gallagher, Nonimaging optics in solar energy (Morgan and Claypool Publishers, 2008)
  15. H. Ries, A. Segal, J. Karni, Extracting concentrated guided light, Appl. Opt. 36, 2869 (1997) [CrossRef]
  16. A. Segal, M. Epstein, Modeling of solar receiver for cracking of liquid petroleum gas, J. Sol. Energy Eng. 119, 48 (1997) (world priority for beam-down concept) [CrossRef]
  17. A. Segal, M. Epstein, Comparative performances of tower-top and tower-reflector central solar receivers, Sol. Energy 65, 206 (1999) [CrossRef]
  18. A. Segal, M. Epstein, “Potential efficiencies of a solar-operated gas turbine and combined cycle, using the reflective tower optics”, in Proceedings of ISES Solar World Congress, Jerusalem, Israel (1999)
  19. A. Segal, M. Epstein, The optics of the solar tower reflector, Sol. Energy 69, 229 (2000) [CrossRef]
  20. A. Segal, M. Epstein, Practical considerations in designing large scale beam-down optical systems, J. Sol. Energy Eng. 130, 011009 (2008) [CrossRef]
  21. A. Segal, M. Epstein, Truncation of the secondary concentrator (CPC) as means to cost-effective beam-down system, J. Sol. Energy Eng. 132, 031004 (2008) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.