Open Access
Review
Issue
Renew. Energy Environ. Sustain.
Volume 7, 2022
Article Number 9
Number of page(s) 16
DOI https://doi.org/10.1051/rees/2021056
Published online 06 January 2022
  1. R. Alizadeh, P.D. Lund, L. Soltanisehat, Outlook on biofuels in future studies: a systematic literature review, Renew. Sustain. Energy Rev. 134, 110326 (2020) [Google Scholar]
  2. R. Alizadeh, L. Soltanisehat, Stay competitive in 2035: a scenario-based method to foresight in the design and manufacturing industry, Foresight 22, 309–330 (2020) [Google Scholar]
  3. L. Soltanisehat, R. Alizadeh, N. Mehregan, Research and development investment and productivity growth in firms with different levels of technology, Iranian Econ. Rev. 23, 795–818 (2019) [Google Scholar]
  4. NTUA, Renewables 2019: global status report, renewable energy policy network for the 21st century (2019) ISBN 978-3-9818911-7-1 [Google Scholar]
  5. N. Mouraviev, Renewable energy in Kazakhstan: challenges to policy and governance, Energy Policy 149, 112051 (2021) [Google Scholar]
  6. N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies, Futures 69, 31–49 (2015) [Google Scholar]
  7. R. Gnatowska, A. Was, Wind energy in poland − economic analysis of wind farm, E3S Web Conferen. 14 (2017) [Google Scholar]
  8. B. University, Coherent application threads (2020). Available: http://people.bu.edu/dew11/files/main.pdf [Google Scholar]
  9. R. Susan-Resiga, G.D. Ciocan, I. Anton, F. Avellan, Analysis of the swirling flow downstream a francis turbine runner, J. Fluids Eng. Trans. ASME 128, 177–189 (2006) [Google Scholar]
  10. C. Hansen, A. Butterfield, Aerodynamics of horizontal-axis wind turbines, Annu. Rev. Fluid Mech. (1993) [Google Scholar]
  11. Reve, Wind energy expanded 19% in 2019, with around 60 GW of new capacity (2020). Available: https://www.evwind.es/2020/07/05/wind-energy-expanded-19-in-2019-with-around-60-gw-of-new-capacity/75563 [Google Scholar]
  12. A.E. Suzer, V.E. Atasoy, S. Ekici, Developing a holistic simulation approach for parametric techno-economic analysis of wind energy, Energy Policy 149, 112105 (2021) [Google Scholar]
  13. W. Al-Nassar, S. Alhajraf, A. Al-Enizi, L. Al-Awadhi, Potential wind power generation in the State of Kuwait, Renew. Energy 30, 2149–2161 (2005) [Google Scholar]
  14. J. Xu, Z. Han, X. Yan, W. Song, Design optimization of a multi-megawatt wind turbine blade with the NPU-MWA airfoil family, Energies 12 (2019) [Google Scholar]
  15. P. Bachant, M. Wosnik, Effects of reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine, Energies 9, 73 (2016) [Google Scholar]
  16. A.Z. Baig, T.A. Cheema, Z. Aslam, Y.M. Khan, H. Sajid Dar, S.B. Khaliq, A new methodology for aerodynamic design and analysis of a small scale blended wing body, J. Aeronaut. Aerospace Eng. 07, 1–6 (2018) [Google Scholar]
  17. A. John Rosenberg, A. John, B. Aaron John Rosenberg, A. Sharma, M. Professor Partha Sarkar Eugene Takle Hui Hu Baskar Ganapathysubramanian, A Computational Analysis of Wind Turbine and Wind Farm Aerodynamics with a Focus on Dual Rotor Wind Turbines Recommended Citation “A Computational Analysis of Wind Turbine and Wind Farm Aerodynamics with a Focus on Dual Rotor Wind Turbines” (201, Iowa State University (2016) [Google Scholar]
  18. M.J. Pasqualetti, R. Righter, P. Gipe, History of wind energy, in Encyclopedia of Energy (Elsevier, 2004), pp. 419–433 [Google Scholar]
  19. F. Alqurashi, M.H. Mohamed, Aerodynamic forces affecting the h-rotor darrieus wind turbine, Model. Simul. Eng. 2020, 1–15 (2020) [Google Scholar]
  20. F.M. Al-Ruwaih, G. Shafiullah, Geochemical processes and assessment of water quality for irrigation of Al-shagaya field-C, Kuwait, Int. j. Environ. Agric. Biotech. 2, 164–180 (2016) [Google Scholar]
  21. I. Conference, S. Science, Energy and Society in Transition: 2nd International Conference on Energy Research and Social Science. 28- 31 May 2019. Arizona State University. Tempe, USA, (2019) [Google Scholar]
  22. R. Bhandari, B. Kumar, F. Mayer, Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors, J. Clean. Prod. 277, 123385 (2020) [Google Scholar]
  23. A.S.M.M. Hasan, M.T. Hoq, A. Kabir, T. Sakib, The Cost Factor Analysis of Wind Power Plants-An Economic Perspective (2018) [Google Scholar]
  24. M. Junginger, A. Faaij, W.C. Turkenburg, Cost Reduction Prospects for Offshore Wind Farms, Wind Engineering 28, 97–118 (2004) [Google Scholar]
  25. GlobalWindAtlas, Global Wind Atlas, (2021). https://globalwindatlas.info/area/Kuwait [Google Scholar]
  26. E. Commission, European-Commission geographical information system (2021) [Google Scholar]
  27. K. Yessian, P. DeLaquil, B. Merven, M. Gargiulo, G. Goldstein, Economic analysis of clean energy options for Kuwait, Int. J. Energy Sect. Manag. 7, 29–45 (2013) [Google Scholar]
  28. H.H. Pourasl, V.M. Khojastehnezhad, Techno-economic analysis of wind energy potential in Kazakhstan, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235, 1563–1576 (2021) [Google Scholar]
  29. W. Du, Y. Zhao, Y. He, Y. Liu, Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines, Renewable Energy 97, 414–421 (2016) [Google Scholar]
  30. H. Polinder, D. Bang, R.P.J.O.M. Van Rooij, A.S. McDonald, M.A. Mueller, 10 MW wind turbine direct-drive generator design with pitch or active speed stall control, Proceedings of IEEE International Electric Machines and Drives Conference, IEMDC 2007 2, 1390–1395 (2007) [Google Scholar]
  31. Opensooq, Farms for sale in Kuwait, 2021. https://kw.opensooq.com/en/realestate-for-sale/land-for-sale [Google Scholar]
  32. M.M. Riaz, B.H. Khan, Techno-economic analysis and planning for the development of large scale offshore wind farm in India, Int. J. Renew. Energy Dev. 10, 257–268 (2021) [Google Scholar]
  33. G.C. Institute, Global Costs of Carbon Capture and Storage, Global CCS Institute. (2017), [Online]. Available: https://www.globalccsinstitute.com/archive/hub/publications/201688/global-ccs-cost-updatev4.pdf [Google Scholar]
  34. H.E. Akyuz, H. Gamgam, Statistical Analysis of Wind Speed Data with Weibull, Lognormal and Gamma Distributions, Cumhuriyet Science Journal 68–76 (2017) [Google Scholar]
  35. S. Ali, S.-M. Lee, C.-M. Jang, Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data, Energies 10 (2017) [Google Scholar]
  36. K.A. Adeyeye, N. Ijumba, J.S. Colton, A Techno-Economic Model for Wind Energy Costs Analysis for Low Wind Speed Areas, Processes 9, 1463 (2021) [Google Scholar]
  37. M. Gul, N. Tai, W. Huang, M.H. Nadeem, M. Yu, Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power, Sustainability 11 (2019) [Google Scholar]
  38. C. Bak, Aerodynamic design of wind turbine rotors. Woodhead Publishing Limited, (2010) [Google Scholar]
  39. M.S. Adaramola, S.S. Paul, S.O. Oyedepo, Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria, Energy Convers. Manag. 52, 3363–3368 (2011) [Google Scholar]
  40. A.N. Celik, A Techno-Economic Analysis of Wind Energy in Southern Turkey, Int. J. Green. Energy. 4, 233–247 (2007) [Google Scholar]
  41. A.L. Manwell, J.F. McGowan, J.G. Rogers, Wind Energy Explained Theory, Design and Application, 2nd ed. West Sussex, UK: John Wiley & Sons Ltd (2009) [Google Scholar]
  42. S. Rahimi, M. Meratizaman, S. Monadizadeh, M. Amidpour, Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area, Energy 67, 381–396 (2014) [Google Scholar]
  43. A. Tazay, Techno-Economic Feasibility Analysis of a Hybrid Renewable Energy Supply Options for University Buildings in Saudi Arabia, Open Engineering 11, 39–55 (2020) [Google Scholar]
  44. O. Charrouf, A. Betka, M. Becherif, A. Tabanjat, Techno-economic Analysis of Wind Turbines in Algeria, Int. J. Emerg. Electr. Power. Syst. 19 (2018) [Google Scholar]
  45. J.D. Rhodes, A geographically resolved method to estimate levelized power plant costs with environmental externalities, Energy Policy 102, 491–499 (2017) [Google Scholar]
  46. P. Bortolotti, C.L. Bottasso, A. Croce, Combined preliminary–detailed design of wind turbines, Wind Energy Science 1, 71–88 (2016) [Google Scholar]
  47. R. Bakhshi, P.A. Sandborn, A Return on Investment Model for the Implementation of New Technologies on Wind Turbines, IEEE Transactions on Sustainable Energy 9, 284–292 (2018) [Google Scholar]
  48. A. Botchkarev, Estimating the Accuracy of the Return on Investment (ROI) Performance Evaluations, Interdisciplinary Journal of Information, Knowledge, and Management, 10, 217–233 (2015) [Google Scholar]
  49. P.M. Heuser, D.S. Ryberg, T. Grube, M. Robinius, D. Stolten, Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen, Int. J. Hydrog. Energy. 44, 12733–12747 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.